Elliptic flow of strange and multi-strange hadrons in isobar collisions at RHIC

Not scheduled
20m
Copenhagen

Copenhagen

Poster The initial stages and nuclear structure in heavy-ion collisions

Speaker

Priyanshi Sinha

Description

Elliptic flow ($v_{2}$) primarily arises from the initial spatial anisotropy of the collision geometry. Elliptic flow of charged hadrons has been observed to differ in magnitude between the isobar collisions, $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr, at $\sqrt{s_{\mathrm {NN}}}$ = 200 GeV despite the same nucleon number. This indicates a difference in nuclear structure and deformation between these nuclei. Moreover, $v_{2}$ measurements of the strange and multi-strange hadrons are excellent probes for understanding these initial state anisotropies of the medium produced in these collisions, owing to their smaller hadronic cross-section compared to light hadrons. The collected datasets include approximately two billion events per isobaric species, offering a unique opportunity for making this statistically hungry measurement.
In this presentation, we will report measurements of elliptic flow of $K_{s}^{0}$, $\Lambda$, $\overline{\Lambda}$, $\phi$, $\Xi^{-}$, $\overline{\Xi}^{+}$, and $\Omega^{-}$+ $\overline{\Omega}^{+}$ at mid-rapidity for Ru+Ru and Zr+Zr collisions at $\sqrt{s_{\mathrm {NN}}}$ = 200 GeV. The transverse momentum ($p_{T}$) dependence of $v_{2}$ for minimum bias collisions and various centrality intervals will be shown. The $p_{T}$-integrated $v_{2}$ of these strange and multi-strange hadrons will also be shown. System size dependence of $v_{2}$ will be investigated by comparing the results in isobar collisions with those from Cu+Cu, Au+Au, and U+U collisions. The number of constituent quark (NCQ) scaling for these strange hadrons will also be tested. Experimental data will be compared with transport model calculations to provide insight into the nuclear structure of the isobars.

What kind of work does this abstract pertain to? Experimental
Which experiment is this abstract related to? STAR

Author

Co-author

Presentation materials

There are no materials yet.