Dynamic mechanisms for shadowing

Vadim Guzey

University of Jyväskylä & Helsinki Institute of Physics, University of Helsinki, Finland

Outline:

- Nuclear shadowing in scattering with nuclei
- Leading twist approximation for nuclear shadowing
- Nuclear shadowing in dipole picture
- Nuclear shadowing and saturation
- Summary and outlook

Nuclear shadowing in AA scattering

- Nuclear shadowing (NS) is general phenomenon of high-energy scattering

 → nuclear cross section < sum of nucleon cross sections → nuclear parton
 distributions (nPDFs) < sum of nucleon PDFs at small x.
- In context of nucleus-nucleus (AA) scattering → NS defines initial conditions (cold nuclear matter effects).

 Fundamental in its own right (e.g. nPDFs) and also for description of onset of new states of matter → color glass condensate (CGC) and quark-gluon plasma (QGP).

Nuclear shadowing in $\gamma^{(*)}$ A scattering

- Cleanest way to probe NS is using photons: real photons in UPCs at RHIC and LHC and virtual photons eA DIS with fixed targets and at EIC.
- In target rest frame, NS is due to multiple interactions of long-lived fluctuations of $\gamma^{(*)}$ with target nucleons \rightarrow destructive interference of amplitudes with N=1,2,..A nucleons \rightarrow nucleons geometrically shadow each other \rightarrow Gribov-Glauber (GG) theory of NS, Glauber, PRD 50 (1955) 242; Gribov, Sov. Phys. JETP 29 (1969) 483; Frankfurt, Strikman, Phys. Rept. 160 (1988) 235; Piller, Weise, Phys. Rept. 330 (2000) 1; Armesto, J. Phys. G 32 (2006) R367.

- Soft processes: fluctuations are vector mesons (VMD model), Bauer, Spital, Yennie, Pipkin, Rev. Mod. Phys. 50 (1978) 261 or generic hadronic states in Good-Walker picture, Good, Walker, PR 120 (1960) 1857; Blättet, Baym, Frankfurt, Heiselberg, Strikman, PRD 47 (1992) 2761.
- Hard processes: fluctuations are qq, qqg,... QCD states (dipoles), Nikolaev, Zakharov, Z. Phys. C 49 (1991) 607; Mueller, NPB 415 (1994) 373.

Gribov-Glauber theory of nuclear shadowing

• Interactions with N=1,2,3,...A target nucleons:

• Shadowing correction to total $\gamma^{(*)}$ A cross section, Karmanov, Kondratyuk, JETP Lett. 18 (1973)

266; Kaidalov et al, EPJ C 5 (1998) 111; Piller, Weise, Phys. Rept. 330 (2000) 1

$$\delta\sigma_{\gamma^*A} = -8\pi \int d^2b \int_{-\infty}^{+\infty} dz_1 \int_{z_1}^{+\infty} dz_2 \, \rho_{A}(\boldsymbol{b}, z_1) \, \rho_{A}(\boldsymbol{b}, z_2)$$

$$\times \int_{4m_{\pi}^2}^{W^2} dM_X^2 \cos[(z_2 - z_1)/\lambda] \frac{d^2\sigma_{\gamma^*N}^{\text{diff}}}{dM_X^2 \, dt} \Big|_{t \approx 0} \exp\left[-\frac{\sigma_{XN}}{2} \int_{z_1}^{z_2} dz \, \rho_{A}(\boldsymbol{b}, z)\right]$$

• Main feature: N=2 contribution to NS in terms of diffraction on proton → consequence of unitarity (AGK cutting rules), Abramovsky, Gribov, Kancheli, Sov. J. Nucl. Phys. 18 (1974) 308 → elastic and inelastic intermediate states.

$$\sigma_{\text{eff}} = \frac{16\pi}{\sigma_{\gamma N}(1+\eta^2)} \int_{4m_{\pi}^2}^{W^2} dM_X^2 \left. \frac{d^2 \sigma_{\gamma^* N}^{\text{diff}}}{dM_X^2 dt} \right|_{t \approx 0}$$

GG shadowing in soft γ A scattering

• Using data on diffraction of real photons to low and high diffractive masses $M_X \rightarrow$ good description of total γA cross section, Adeluyi, Fai, PRC 74 (2006) 054904

• Account of hadronic fluctuations of real photons → elastic (ρ) and inelastic intermediate states → good description of Run 1,2 data on coherent ρ photoproduction in Pb-Pb UPCs@LHC, Frankfurt, Guzey, Strikman, Zhalov, PLB 752 (2016) 51; Guzey, Kryshen, Zhalov, PRC 102 (2020) 1, 015208

• Gribov (inelastic) shadowing correction is small for pA, noticeable for γ A, and dominant (leading twist) for γ *A.

Mass Number A

Leading twist model of nuclear shadowing

• Combination of Gribov-Glauber theory with QCD factorization theorems for inclusive and diffractive DIS → prediction for small-x nPDFs at input scale Q₀, Frankfurt, Strikman, EPJ A5 (1999) 293; Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255

Alternative to extraction of nPDFs using global QCD fits, Plenary talk on nPDFs, 23.06.

Leading twist model of nuclear shadowing (2)

- Essential input: universal, leading twist (LT) diffractive PDFs of proton, Collins, PRD 57, 3051 (1998); PRD 61, 019902 (2000)
- Extracted from HERA data on diffraction in ep DIS, Aktas et al [H1], EPJ C48, 715 (2006), EPJC 48, 749 (2006); Chekanov et al [ZEUS], NPB 831, 1 (2010)

•Interaction with 2 nucleons modelindependently in terms of diffractive (Pomeron) PDFs:

$$\sigma_2^j(x,Q^2) = \frac{16\pi}{(1+\eta^2)xf_{j/N}(x,Q^2)} \int_x^{0.1} dx_{\mathbb{P}} \beta f_j^{D(4)}(\beta,Q^2,x_{\mathbb{P}},t_{\min}).$$

Interaction with N ≥ 3 nucleons modeled using hadronic fluctuations of photon

• "LT" in the name comes from HERA analysis, but higher twist effects in diffraction at low Q₀ could be significant, Motyka, Sadzikowski, Slominski, PRD 86 (2012) 111501; Maktoubian, Mehraban, Khanpour, Goharipour, PRD 100 (2019) 054020.

LTA predictions for nPDFs

•HERA analysis: perturbative Pomeron is made mostly of gluons → LTA model naturally predicts large gluon nuclear shadowing, Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255

- Alternative, complementary point of view: shadowing is mixture of leading and higher twist (HT) effects in dipole picture with saturation, Kowalski, Lappi, Venugopalan, PRL 100 (2008) 022303, or a purely HT effect, Qiu, Vitev, PRL 93 (2004) 262301.
- Electron-Ion Collider has potential to discriminate models of NS due to:
- wide x-Q² coverage
- measurements of the longitudinal structure function $F_L^A(x,Q^2)$ sensitive to gluons
- measurements of diffraction in eA DIS

Nuclear shadowing in UPC at LHC

- Before EIC, models of NS can be tested in ultraperipheral collisions (UPCs) of heavy ions at LHC and RHIC, Plenary talks on UPCs, 21.06; Nystrand, 20.06
- Measured cross section converted nuclear suppression factor Spb, Abelev et al. [ALICE], PLB718 (2013) 1273; Abbas et al. [ALICE], EPJ C 73 (2013) 2617; [CMS] PLB 772 (2017) 489; Acharya et al [ALICE], EPJC 81 (2021) 8, 712

A. Stahl, LPCC CERN Seminar, 6.12.2022

- Direct evidence of large gluon shadowing, R_g(x=6×10⁻⁴ 0.001) ≈ 0.6 in agreement with LTA model and EPS09/EPPS16 nPDFs, Guzey, Kryshen, Strikman, Zhalov, PLB 726 (2013) 290, Guzey, Zhalov, JHEP 1310 (2013) 207
- NLO pQCD challenges this interpretation due strong cancellation between LO and NLO gluon terms, Eskola, plenary talk on 21.06.

Impact parameter dependence of NS

 Leading twist models predicts dependence of nPDFs on the impact parameter b (transverse position of partons in nucleus):

$$xf_{j/A}(x, Q_0^2, b) = A T_A(b)xf_{j/N}(x, Q_0^2) - 8\pi A(A - 1)B_{\text{diff}} \Re e \frac{(1 - i\eta)^2}{1 + \eta^2} \int_x^{0.1} dx_{\mathbb{P}} \beta f_j^{D(3)}(\beta, Q_0^2, x_{\mathbb{P}})$$

$$\times \int_{-\infty}^{\infty} dz_1 \int_{z_1}^{\infty} dz_2 \, \rho_A(\vec{b}, z_1) \rho_A(\vec{b}, z_2) \, e^{i(z_1 - z_2)x_{\mathbb{P}} m_N} e^{-\frac{A}{2}(1 - i\eta)\sigma_{\text{soft}}^j(x, Q_0^2) \int_{z_1}^{z_2} dz' \rho_A(\vec{b}, z')}$$

- •Shadowing is stronger at small b \rightarrow broadening of nPDFs in b-space \rightarrow shift of t-dependence of $\gamma A \rightarrow J/\psi A$ cross section, Guzey, Strikman, Zhalov, PRC 95 (2017) 2, 025204
- → confirmed by ALICE, Acharya et al., PLB 817 (2021) 1, 136280

- Similar effect is caused by saturation in dipole picture, Bendova, Cepila, Contreras, Matas, PLB 817 (2021) 136306
- With additional assumptions, b-dependence of nPDFs can be extracted from data using global QCD fits, EPS09s, Helenius, Eskola, Honkanen, Salgado, JHEP 07 (2012) 073.

Nuclear shadowing in dipole picture

Space-time picture of strong interaction at high energies in target rest frame
 → photon is a superposition of long-lived qq̄, qq̄g,... dipoles.

• Dipoles successively, elastically scatter on target nucleons \rightarrow high-energy factorization for, e.g., $\gamma + A \rightarrow J/\psi + A$ amplitude:

$$\mathcal{M}^{\gamma A \to J/\psi A} = \int d^2\mathbf{r}_T \int \frac{dz}{4\pi} \int d^2\mathbf{b}_T [\Psi^*_{J/\psi} \Phi_\gamma] 2 \left(1 - e^{-\frac{1}{2}\sigma_{\mathrm{dip}}(\mathbf{r}_T)T_A(\mathbf{b}_T)}\right)$$
 Overlap of photon (QED) and J/\$\psi\$ (model) wf's Dipole cross section from fits to HERA

- Describes data on $F_{2A}(x,Q^2)$ in eA DIS, Kowalski, Lappi, Venugopalan, PRL 100 (2008) 022303
- But overestimates coherent J/ ψ photoproduction in Pb-Pb UPCs, Lappi, Mäntysaari, PRC 87 (2013) 3, 032201; Luszczak, Schäfer, PRC 99 (2019) 4, 044905
- Weak shadowing is general property of eikonal scattering of small-size dipoles, e.g. longitudinal structure function F_LA(x,Q²), Frankfurt, Guzey, McDermott, Strikman, JHEP 02 (2002) 027
- Need to include higher qqg Fock states (dipoles) to better describe diffraction on proton driving NS, Buchmüller, McDermott, Hebeker, NPB 487 (1997) 283; Kowalski, Lappi, Marquet, Venugopalan, PRC 78 (2008) 045201; Golek-Biernat, Luszczak, PRD 79 (2009) 114010

Dipole picture: role of qqg dipoles

• Higher qq̄g Fock states contribute to inelastic shadowing → bridge gap between dipole picture and LT model.

• Provide good description of coherent J/ψ photoproduction in Pb-Pb UPCs

Luszczak, Schäfer, SciPost Phys.Proc. 8 (2022) 109, arXiv:2108.06788 [hep-ph]

Kopeliovich, Krelina, Nemchik, Potashnikova, PRD 107 (2023) 5, 054005

- Depends on details of dipole cross section and photon and J/ ψ wave functions.
- Alternatively, good description using BK equations with nuclear geometry,

Nuclear shadowing and saturation

- Many questions on connection between shadowing and saturation:
 - ★ Are they the same thing or capture the same physics?
 - **★** If not, how should one combine them together?
 - ★ What are their distinctive signatures?

***** ...

 Possible stages of highenergy scattering off nuclei :

- LT shadowing is linear regime, not the same as non-linear saturation, but it lowers saturation scale Q_s, Frankfurt, Guzey, Stasto, Strikman, Rept. Prog. Phys. 85 (2022) 12, 126301
- Q_s controls onset of non-linear parton recombination, Gribov, Levin, Ryskin, Phys. Rep. 100 (1983) 1; Muller, Qiu, NPB 268 (1986) 427 \rightarrow delayed by NS and dilute nuclear density:

$$Q_{\rm s}^2 \sim \frac{\alpha_{\rm s}(Q_{\rm s}^2)}{\pi R_{\rm gN}^2} x g(x, Q_{\rm s}^2) \longrightarrow \frac{Q_{\rm sA}^2}{Q_{\rm sN}^2} = A \frac{R_{\rm gN}^2}{R_A^2} \frac{g_A(x, Q^2)}{A g_N(x, Q^2)} \longrightarrow \frac{Q_{\rm sA}^2}{Q_{\rm sN}^2} = 0.3 A^{1/3} \approx 1.75$$

Nuclear shadowing and black disk limit (BDL)

- LT approximation breaks down at sufficiently low x.
- Estimated using BDL limit $\sigma_{\text{diff}}/\sigma_{\text{tot}} \le 1/2 \rightarrow \sigma_2 \le 8\pi B_{2g} \approx 50 \text{ mb at } x\sim 10^{-5} \rightarrow \text{lower}$ limit on NS $g_A(x,Q^2)/Ag_p(x,Q^2) \ge 0.3 \rightarrow \text{compare to Kopeliovich, et al PRC79 (2009) 064906}$
- In BDL, photon fluctuations interact with maximal cross section $2\pi R^2$, but their masses grow \rightarrow Bjorken scaling of DIS structure functions violated, Gribov, Sov. Phys. JETP 30 (1970) 709; McDermott, Frankfurt, Guzey, Strikman, EPJC 16 (2000) 641

$$F_2^A(x,Q^2) = \sum_i e_i^2 Q^2 \frac{2\pi R_A^2}{12\pi^3} \ln 1/4 m_N R_A x \qquad \text{additional logs from interaction range}$$

$$F_2^p(x,Q^2) \propto \sum_i e_i^2 Q^2 \frac{2\pi R_N^2}{12\pi^3} (1 + \frac{4c_N^2}{R_N^2} \ln^2 x_0/x) \ln 1/x$$

Shadowing continues to decrease:

$$\frac{F_2^A(x,Q^2)}{AF_2^N(x,Q^2)} \propto \frac{R_A^2}{AR_N^2} \frac{1}{1 + 4c_N^2 R_A^2 \ln^2 1/x}$$

• Signals of saturation/BDL more pronounced in diffractive final states: vector mesons, Frankfurt, Guzey, McDermott, Strikman, PRL 87 (2001) 192301, Structure functions, Kowalski, Lappi, Venugopalan, PRL 100 (2008) 022303, dijets, E. Iancu, parallel session talk, 20.06.

Summary and Outlook

- Leading twist model and dipole picture are two competing dynamic mechanisms for nuclear shadowing.
- They are best discriminated by nuclear longitudinal F_LA and diffractive F_{2AD} structure functions in the EIC kinematics.
- Real photon-nucleus scattering in UPCs at the LHC and RHIC has provided new information on dynamics of nuclear shadowing in small-x QCD.
- The UPC data at the LHC including the recent measurements of energy dependence of NS challenge both LT and dipole models.
- The LT model would benefit from better treatment of antishadowing and a possible symbiosis with nPDFs from global QCD fits.
- Important to apply recent progress in NLO calculations in the dipole model to UPC phenomenology.
- LT shadowing ≠ saturation, but slows down its onset.
- Nuclear shadowing does not saturate even in BDL.
- I didn't have time to discuss large LT shadowing in incoherent scattering.