

QIS for pdfs, saturation and and non-equilibrium dynamics

João Barata, BNL and C2QA

Brookhaven Why QIS for Nuclear Physics? **National Laboratory** Quantum speedup Computational steps to factor a number **New Technologies** 10¹⁶ **Experimental needs** 1014 1012 1010 10⁸ 10⁶ Conventional computer QFT_{2n}^{-1} Quantum computer 100/01 1000 Number of digits [Berges et al, 2005.12299] **New Theoretical ideas** [Lewis-Swan, Safavi-Naini, Entanglement Bollinger, Rey, 1808.07134] **Scrambling** Proton Structure Confinement Lyapunov **Exponents** [Klebanov, Kutasov, Murugan, 0709.2140] **Volume Law** [Kharzeev, Levin, 1702.03489] **Thermalization**

Outline

1) New Technologies

(2) Applications in experimental HEP

- (3) Theory and Pheno applications
 - Structure of matter
 - --- Fragmentation
 - Non-perturbative and out of equilibrium physics

1 New Technologies

[Reviews in back up slides]

Analog quantum simulators

Basic idea: A controllable quantum system that can be engineered to mimic a physical system

An example: 1+1d lattice QED = Quantum Link model with truncated electric field; spin ℓ

New: 2+1d extensions [Ott, Zache, Jendrzejewski, Berges, 2012.10432]

The most successful platform, but:

Non universal approach

Analog

Digital quantum computers

Basic idea: A spin-chain where local operators can be applied

Computer = many qubits (lines) + unitary gates (operators)

$$|\psi\rangle = H^0 O_+^{01} O_+^{12} H^1 |q_0\rangle |q_1\rangle |q_2\rangle$$

Several implementations

Conceptually simple, but:

Few qubits

External noise

Tensor Networks (classical)

Basic idea: Lowest states of a gapped local Hamiltonian obey the area-law for entanglement entropy i.e. they are highly constrained by locality

Very powerful in 1+1d! Best example: density matrix renormalization group algorithm

Fails when: Long time evolution Near critical points

2 Applications in experimental HEP

QIS for experimental HEP

Motivated by large amounts of data...

... and optimization tasks

Several applications

Particle tracking

[Zlokapa et al, 1908.04475] [Magano et al, 2104.11583]

Jet clustering

[Wei, Nail, Harrow, Thaler, 1908.08949] [Pires, Bargassa, Seixas, Omar, 2101.05618] [Delgado, Thaler, 2205.02814]

Detector simulation

[Yeon Chang et al, 2101.11132]

Anomaly detection

[Alvi, Bauer, Nachman, 2206.08391] [Ngairangbam, Spannowsky, Takeuchi, 2112.04958]

Quantum sensing

[Degen, Reinhard, Cappellaro, 1611.02427]

For recent review: [Delgado et al, 2203.08805]

Theory and Pheno applications

Extracting PDFs from quantum computers

$$f(x) = \int dy \, e^{ixP^+y} \langle \bar{\psi}(y)\gamma^+ W(y)\psi(0)\rangle_{H}$$

Boost to implement in euclidean lattice

Suitable for quantum calculation

Suitable for classical calculation

Extracting PDFs from quantum computers

Parton Physics on a Quantum Computer [1908.10439]

Henry Lamm,^{1,*} Scott Lawrence,^{1,†} and Yukari Yamauchi^{1,‡}

First exploratory calculation of quark distribution in 1+1d Thirring model

$$f(x) = \int dy \, e^{ixP^{+}y} \langle \bar{\psi}(y)\gamma^{+}W(y)\psi(0)\rangle_{H}$$

(1) Discretization + Kogut-Susskind prescription [Kogut, Susskind, 1975]

$$f_{\text{stag}}(x) = \langle P | \sum_{y,z} e^{ixP(y-z)} \left[\delta_{|z|}^{|y|} + i(-1)^z \delta_{|z+1|}^{|y|} \right]$$
$$\times e^{iH(y-z)} \chi^{\dagger}(y) e^{-iH(y-z)} \chi(z) |P\rangle$$

(2) Map to spin chain system via Jordan-Wigner transform

Extracting PDFs from quantum computers

Challenges:

For DLCQ based approaches see:

[Kreshchuk et al, 2002.04016]
[Qian et al, 2112.01927]

Including Wilson lines:

Compute hadronic tensor (no Wilson lines) [Lamm, Lawrence, Yamauchi, 1903.08807]

[Echevarria, Egusquia, Rico, Schnell, 2011.01275]

Several strategies for measuring Wilson loops, mesonic strings, ...

[Zohar, Cirac, Reznik, 1208.4299] [Brennen, 1512.06565] [Zohar, 1911.11156]

Target state preparation: Hard and generic problem

Hadronic tensor calculation

Deeply inelastic scattering structure functions on a hybrid quantum computer [1908.07051]

Niklas Mueller,^{1,*} Andrey Tarasov,^{1,2,3,†} and Raju Venugopalan^{1,‡}

Worldline formulation for QED (QCD) using CGC EFT

$$F_2(q,P) = rac{\sigma\,Q^2}{2\pi e^2} \int [\mathcal{D}
ho] W[
ho] \int\limits_{x_\perp} \int\limits_z \sum_{L,T;\,f} \left|\Psi^f_{L,T}(z,x_\perp)
ight|^2 imes D_
ho(x_\perp)\,i \int d^2 heta \langle - heta| \left[\Omega_{L,T}(z,x_\perp)
ight] | heta
angle$$

easy to compute using standard methods

easy to compute in Qcomputer

$$\hat{
ho}_c = |0
angle \langle 0|$$
 $-H$ σ $\hat{
ho}_n = \mathbb{I}_n/2^n \ (n ext{ qubits})$ $\Omega_{L,T}$

Worldline formulation reduces problem to simple trace

Quantum computers to leverage PDF Fits

Determining the proton content with a quantum computer [2011.13934]

Adrián Pérez-Salinas,^{1,2} Juan Cruz-Martinez,³ Abdulla A. Alhajri,⁴ and Stefano Carrazza^{3,5,4}

A master algorithm for scattering

[1111.3633] [1404.7115] [1112.4833]

- Fundamentally hard problem: physics from MeV to TeV!
- --- Not guaranteed quantum methods can solve it efficiently

Other formulations for scalar theories
[Yeter-Aydeniz et al, 1811.12332]
[Kloc, Savage, 1808.10378]
[Kreshchuk et al, 2002.04016]
[JB, Mueller, Tarasov, Venugopalan, 2012.00020]

Divide and conquer

Quantum computers for parton showers

[1904.03196]

A quantum algorithm for high energy physics simulations

Benjamin Nachman,* Davide Provasoli,[†] and Christian W. Bauer[‡]
Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Wibe A. de Jong[§]

Consider theory with non-diagonal flavor operator

$$\mathcal{L} = \bar{f}_1(i\partial \!\!\!/ + m_1)f_1 + \bar{f}_2(i\partial \!\!\!/ + m_2)f_2 + (\partial_\mu \phi)^2 + g_1\bar{f}_1f_1\phi + g_2\bar{f}_2f_2\phi + g_{12}\left[\bar{f}_1f_2 + \bar{f}_2f_1\right]\phi$$

[2102.05044]

Simulating collider physics on quantum computers using effective field theories

Christian W. Bauer* and Benjamin Nachman[†] Marat Freytsis[‡]

Quantum walk approach to simulating parton showers

Khadeejah Bepari,^a Sarah Malik,^b Michael Spannowsky^a and Simon Williams^c

QIS for probes of nuclear matter

[2010.03571] [2106.08394]

Quantum simulation of open quantum systems in heavy-ion collisions

Wibe A. de Jong,^{1,*} Mekena Metcalf,^{1,†} James Mulligan,^{2,3,‡} Mateusz Płoskoń,^{2,§} Felix Ringer,^{2,¶} and Xiaojun Yao^{4,**}

Open quantum systems formulation for quarkonia, jets, ...

[Blaizot, Escobedo, 1711.10812, 1803.07996] [Akamatsu, 2009.10559]

Quantum circuit for Lindbladian evolution

QIS for probes of nuclear matter

Light Front approach using CGC picture

See also: [JB, Salgado, 2104.04661]

[Li, Lappi, Zhao, 2107.02225]

[JB et al, 2208.06750]

[Yao, 2205.07902]

Pair production

Schwinger effect: intense electric fields can lead to proliferation of particle pairs out of the vacuum

Pair-production rate computed in the semi-clasical limit (no back-reaction) [Schwinger, 1951]

Atomic Quantum Simulation of Dynamical Gauge Fields coupled to Fermionic Matter: From String Breaking to Evolution after a Quench

D. Banerjee¹, M. Dalmonte^{2,3}, M. Müller⁴, E. Rico^{2,3}, P. Stebler¹, U.-J. Wiese¹, and P. Zoller^{2,3,5}

Real-time Dynamics in U(1) Lattice Gauge Theories with Tensor Networks

T. Pichler, M. Dalmonte, 2, 3 E. Rico, 4, 5, 6 P. Zoller, 2, 3 and S. Montangero 1

Schwinger pair production with ultracold atoms

V. Kasper^{a,*}, F. Hebenstreit^b, M. K. Oberthaler^c, J. Berges^a

Implementing quantum electrodynamics with ultracold atomic systems

V. Kasper,^{1,2,*} F. Hebenstreit,³ F. Jendrzejewski,⁴ M. K. Oberthaler,⁴ and J. Berges¹

• • •

From pair production to QCD string breaking

In QCD: Schwinger effect drives hadronization models, it is responsible for string breaking

Fully dynamical simulations exhibit multiple strings

Pair production modifies the vacuum in between fast moving charges

A simple model for jet induced modifications to the soft sector (?)

Spin correlations as probes of QCD strings

Hyperon spin correlations might give access to QCD string evolution and entanglement spectrum

[Gong, Parida, Tu, Venugopalan, 2107.13007]

Entanglement in static string configurations

$$\frac{P(|\hat{n}_1\rangle, |\hat{n}_2\rangle)}{P(|\hat{n}_1\rangle)P(|\hat{n}_2\rangle)} = 1 - \frac{a}{(a+b/2)^2}\cos(\theta_2 - \theta_1)$$

$$a = \# \text{ strange pairs b} = \# \text{ light quarks}$$

Corollary 2. If the magnitude of the coefficient of $\cos(\theta_{ab})$ in a symmetric rotationally invariant correlation function is $> \frac{1}{2}$, then the measured state ρ_{ab} is entangled.

Extended to 1+1d QFT with spin degrees of freedom

Thermalization in gauge theories

[Kinoshita, Wenger, Weiss, Nature 440, 2006]

Early studies driven by surprising experimental results for nearly integrable systems

Strong and weak thermalization of infinite non-integrable quantum systems

M. C. Bañuls,^{1,*} J. I. Cirac,¹ and M. B. Hastings²

$$H = -\sum_i \sigma_z^{[i]} \otimes \sigma_z^{[i+1]} - g \sum_i \sigma_x^{[i]} - h \sum_i \sigma_z^{[i]} \quad \text{(in general non-integrable)}$$

Thermalization in gauge theories

The same occurs in QLMs!

For generic initial conditions = thermalization

Connection to many interesting concepts in QFT: quantum scars, quantum chaos, out of time correlations, ETH, ...

Some key ideas

1

QIS technologies are growing at a fast pace

Some key ideas

2

Resurgence of old ideas under a new light

PHYSICAL REVIEW D

VOLUME 13, NUMBER 4

15 FEBRUARY 1976

Strong-coupling calculations of lattice gauge theories: (1+1)-dimensional exercises

T. Banks and Leonard Susskind*
Tel Aviv University, Tel Aviv, Israel

John Kogut[†]
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853
(Received 25 August 1975)

1975

MORE ABOUT THE MASSIVE SCHWINGER MODEL*

Sidney Coleman

Lyman Laboratory of Physics Harvard University Cambridge, Mass. 02138 Atomic Quantum Simulation of Dynamical Gauge Fields coupled to Fermionic Matter: From String Breaking to Evolution after a Quench

D. Banerjee¹, M. Dalmonte^{2,3}, M. Müller⁴, E. Rico^{2,3}, P. Stebler¹, U.-J. Wiese¹, and P. Zoller^{2,3,5}

2012

Implementing quantum electrodynamics with ultracold atomic systems

V. Kasper,^{1,2,*} F. Hebenstreit,³ F. Jendrzejewski,⁴ M. K. Oberthaler,⁴ and J. Berges¹

1976

2016

Some key ideas

3

There is a wealth of other works I did not cover

Lattice Gauge Theory applications

Entanglement measures and non-pert. QCD

Foundations of QM in the LHC era

Phase structure of Gauge Theories

Chiral dynamics

Back ups

Review papers

Quantum Simulation for HEP

2204.03381

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Quantum Simulation for High Energy Physics

Quantum Computers and Simulators for Lattice 1911.00003

Simulating Lattice Gauge Theories within Quantum Technologies

M.C. Bañuls^{1,2}, R. Blatt^{3,4}, J. Catani^{5,6,7}, A. Celi^{3,8}, J.I. Cirac^{1,2}, M. Dalmonte^{9,10}, L. Fallani^{5,6,7}, K. Jansen¹¹, M. Lewenstein^{8,12,13}, S. Montangero^{7,14} a, C.A. Muschik³, B. Reznik¹⁵, E. Rico^{16,17} b, L. Tagliacozzo¹⁸, K. Van Acoleyen¹⁹, F. Verstraete^{19,20}, U.-J. Wiese²¹, M. Wingate²², J. Zakrzewski^{23,24}, and P. Zoller³

Review papers

Introduction to Tensor Networks 1306.2164

A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States

Román Orús *

Thermalization in QCD and applications of quantum technologies

QCD thermalization: Ab initio approaches and interdisciplinary connections

Jürgen Berges* Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, D-69120 Heidelberg, Germany

Michal P. Heller Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, D-14476 Potsdam, Germany

Aleksas Mazeliauskas[‡] Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland

Raju Venugopalan[§] Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

Review papers

Quantum computing resources and references

	qiskit 0. see relea			h	ttps://q	iskit.or	g	
0	per	1- Sc)Ur	ce	Qu	ıar	ıtu	m
De	eve	lop	me	nt				

