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• Introduction to polarization phenomena in HIC
• Spin distributions from Wigner functions
• Spin dynamics for vector mesons in quantum kinetic 

theory 
• Ideal spin hydrodynamics from Wigner functions 
• Summary 
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Barnet effect and Einstein-de Haas effect
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Barnett effect:

Barnett, Magnetization by rotation,
Phys Rev. 6, 239-270 (1915).  

Spin-orbit (LS) coupling!

Einstein-de Haas effect: 

Einstein, de Haas, Experimental 
proof of the existence of 
Ampere’s molecular currents, 
Verhandl. Deut. Phys. Ges. 17, 
152–170 (1915). Pictures from

doi:10.3389/fphy.2015.00054 
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Global OAM and polarization in HIC
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Global OAM leads to global polarization of Λ hyperons through 
spin-orbit coupling 

Liang and Wang, PRL 94,102301(2005); Betz, Gyulassy, Torrieri, PRC (2007); 
Becattini, Piccinini, Rizzo, PRC (2008); Gao, Chen, Deng, Liang, QW, Wang, PRC 
(2008)

𝒓
𝒑

𝑳 = 𝒓×𝒑

𝑥

𝑦

Spin-Orbit
Coupling 
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STAR: global polarization of 𝚲 hyperon
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ω = (9 ± 1)x1021/s, the largest angular 
velocity that has ever been observed in 
any system

Liang, Wang, PRL (2005) 
Betz, Gyulassy, Torrieri, PRC (2007) 
Becattini, Piccinini, Rizzo, PRC (2008)
Gao et al., PRC (2008)

Updated by BES III, PRL129, 131801 (2022) 
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STAR: global spin alignments 
of vector mesons
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Theory prediction: 
Sheng, Oliva, QW (2020);
Sheng, Oliva, et al., (2022).  

Implication of correlation or fluctuation of strong force fields 

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics

STAR, Nature 614, 244 (2023); 
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• Single particle distribution function in phase space 𝒇(𝒕, 𝒙, 𝒑)

• The evolution of 𝒇 𝒕, 𝒙, 𝒑 is given by the classical Boltzmann 
equation

Single-particle distribution function 
in classical theory (no spin)

particle number in phase 
space volume 𝒅𝟑𝒙𝒅𝟑𝒑

Classical feature: 𝒙 and 𝒑 of the particle can be determined at 
the same time !
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scalar p-scalar vector axial-vector tensor

Vasak-Gyulassy-Elze, Ann. Phys. 173, 462 (1987);  
Elze-Gyulassy-Vasak, Nucl. Phys. B 276, 706 (1986); 

• Wigner function (4x4 matrix) for spin 1/2 massive fermions

• Wigner function decomposition in 16 generators of Clifford 
algebra 
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QKT for massive fermions in Wigner functions

Heinz, PRL 51, 351 (1983); 
Vasak-Gyulassy-Elze, Ann. Phys. 173, 462 (1987)
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Recent reviews: 
Hidaka-Pu-QW-Yang, PPNP (2022)
Gao-Liang-QW, IJMPA (2021)

spin 4-vector



9

• Extended phase space: (𝒙, 𝒑) ⟹ (𝒙, 𝒑, 𝒔)

• Boltzmann equation

Continuous spin variable 
in quantum kinetic theory (with collisions)

continuous spin variable s is 
space-like, which is 
normalized as 𝒔𝟐 = −𝟑
and normal to momentum 
𝒑 5 𝒔 = 𝟎 (𝒑 is time-like) 

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics
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starting from the Boltzmann equation [see, e.g., Refs. [72, 73] and refs. therein]. In this approach, the single-particle
distribution function is expanded in momentum space around its local-equilibrium value in terms of a series of
irreducible Lorentz tensors formed from the particle four-momentum. In order to study deviations from equilibrium,
a consistent power-counting scheme is needed. Usually in the context of deriving hydrodynamics from kinetic theory,
such a power counting is constructed by comparing the mean free path �

mfp

of particle scattering with the length scale
L
hydro

associated with gradients of the hydrodynamical variables, the ratio of the two being the Knudsen number
Kn ⌘ �

mfp

/L
hydro

. In spin kinetic theory, however, another scale, �, enters via the nonlocal collision term [7, 74],
allowing to mutually transfer spin and orbital angular momentum. For a consistent power-counting scheme, it turns
out that �/`

vort

⇠ Kn, where `
vort

is the length scale associated with the fluid vorticity. For � ⌧ �
mfp

, this means
that `

vort

is not of the order L
hydro

, like typical gradients of hydrodynamical quantities, but can be much smaller [for
a related discussion, see Ref. [25]].

In this paper we extend the method of moments to include spin dynamics. This requires the extension of ordinary
phase space by spin degrees of freedom. Here, we choose a description in terms of a spin four-vector sµ, which
is normalized and orthogonal to the particle four-momentum pµ. Starting from the quantum kinetic theory with
nonlocal collisions developed in Refs. [5, 7, 74] [see also the related works [14, 75, 76]], we expand the single-particle
distribution function in terms of irreducible moments formed by pµ and sµ. After deriving the equations of motion
for the spin moments, we employ a truncation to close the system of equations. For the truncation we use the HW
pseudo-gauge and choose the “14+24-moment approximation”, which extends the usual 14-moment approximation
[72] by 24 additional moments related to the components of the spin tensor. In this way, we derive for the first time
a second-order dissipative theory of relativistic spin hydrodynamics.

The paper is organized as follows. In Sec. II we briefly review the kinetic theory developed in Refs. [7, 74]. In Sec. III
we summarize the equations of motion of spin hydrodynamics for the conserved quantities in the HW pseudo-gauge.
The extended power-counting scheme mentioned above is subject of Sec. IV. In Sec. V we generalize the method of
moments as used in Ref. [73] to include spin degrees of freedom. In order to define the distribution function in local
equilibrium, one needs to impose matching conditions, which are discussed in Sec. VI. The equations of motion for
the spin moments are derived in Sec. VII. In Sec. VIII the linearized collision term is expressed in terms of the spin
moments. In order to obtain a closed set of equations of motion we employ the 14+24-moment approximation in Sec.
IX. Furthermore, we calculate the relaxation times for the spin moments and compare them with those related to
the usual dissipative quantities. In Sec. X, in order to establish a connection with the phenomenology of heavy-ion
collisions, we give the expression for the Pauli-Lubanski vector, which is the observable used to quantify the particle
spin polarization. Finally, in Sec. XI we also present the Navier-Stokes limit of the second-order equations of motion,
before concluding this work with a summary and an outlook.
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II. KINETIC THEORY WITH SPIN

In this section we give a brief review of the kinetic theory for massive spin-1/2 particles developed in Refs. [7, 74],
which will be used to derive hydrodynamical equations of motion in the following sections. All information about the
microscopic theory is contained in the spin-dependent distribution function f(x, p, s), which depends on space-time
coordinate xµ, four-momentum pµ, and the spin vector sµ and is uniquely defined in terms of the Wigner function
for spinor fields, see Refs. [7, 74] for details. Its dynamics is described by the generalized Boltzmann equation

p · @f = C[f ] , (1)

where C[f ] is the collision term. As shown in Refs. [7, 74] this collision term contains a nonlocal part, which allows to
convert vorticity into spin. Neglecting a contribution from pure spin exchange without momentum exchange (which
will be justified below), it reads explicitly
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microscopic theory is contained in the spin-dependent distribution function f(x, p, s), which depends on space-time
coordinate xµ, four-momentum pµ, and the spin vector sµ and is uniquely defined in terms of the Wigner function
for spinor fields, see Refs. [7, 74] for details. Its dynamics is described by the generalized Boltzmann equation

p · @f = C[f ] , (1)

where C[f ] is the collision term. As shown in Refs. [7, 74] this collision term contains a nonlocal part, which allows to
convert vorticity into spin. Neglecting a contribution from pure spin exchange without momentum exchange (which
will be justified below), it reads explicitly

C[f ] =

Z

d�
1

d�
2

d�0 W [f(x+�
1

, p
1

, s
1

)f(x+�
2

, p
2

, s
2

)� f(x+�, p, s)f(x+�0, p0, s0)] , (2)

where the integration measure

d� ⌘ d4p �(p2 �m2)dS(p) (3)

denotes integration over the extended phase space, with

dS(p) ⌘
p

p2p
3⇡

d4s �(s · s+ 3)�(p · s) . (4)

collision term

Weickgenannt, Speranza, Sheng, 
QW, Rischke (2021)

Spin DOF as Grassmann variables 
in WL formalism (w/o collisions): 
Mueller, Venugopalan (2019)

2

starting from the Boltzmann equation [see, e.g., Refs. [72, 73] and refs. therein]. In this approach, the single-particle
distribution function is expanded in momentum space around its local-equilibrium value in terms of a series of
irreducible Lorentz tensors formed from the particle four-momentum. In order to study deviations from equilibrium,
a consistent power-counting scheme is needed. Usually in the context of deriving hydrodynamics from kinetic theory,
such a power counting is constructed by comparing the mean free path �

mfp

of particle scattering with the length scale
L
hydro

associated with gradients of the hydrodynamical variables, the ratio of the two being the Knudsen number
Kn ⌘ �

mfp

/L
hydro

. In spin kinetic theory, however, another scale, �, enters via the nonlocal collision term [7, 74],
allowing to mutually transfer spin and orbital angular momentum. For a consistent power-counting scheme, it turns
out that �/`

vort

⇠ Kn, where `
vort

is the length scale associated with the fluid vorticity. For � ⌧ �
mfp

, this means
that `

vort

is not of the order L
hydro

, like typical gradients of hydrodynamical quantities, but can be much smaller [for
a related discussion, see Ref. [25]].

In this paper we extend the method of moments to include spin dynamics. This requires the extension of ordinary
phase space by spin degrees of freedom. Here, we choose a description in terms of a spin four-vector sµ, which
is normalized and orthogonal to the particle four-momentum pµ. Starting from the quantum kinetic theory with
nonlocal collisions developed in Refs. [5, 7, 74] [see also the related works [14, 75, 76]], we expand the single-particle
distribution function in terms of irreducible moments formed by pµ and sµ. After deriving the equations of motion
for the spin moments, we employ a truncation to close the system of equations. For the truncation we use the HW
pseudo-gauge and choose the “14+24-moment approximation”, which extends the usual 14-moment approximation
[72] by 24 additional moments related to the components of the spin tensor. In this way, we derive for the first time
a second-order dissipative theory of relativistic spin hydrodynamics.

The paper is organized as follows. In Sec. II we briefly review the kinetic theory developed in Refs. [7, 74]. In Sec. III
we summarize the equations of motion of spin hydrodynamics for the conserved quantities in the HW pseudo-gauge.
The extended power-counting scheme mentioned above is subject of Sec. IV. In Sec. V we generalize the method of
moments as used in Ref. [73] to include spin degrees of freedom. In order to define the distribution function in local
equilibrium, one needs to impose matching conditions, which are discussed in Sec. VI. The equations of motion for
the spin moments are derived in Sec. VII. In Sec. VIII the linearized collision term is expressed in terms of the spin
moments. In order to obtain a closed set of equations of motion we employ the 14+24-moment approximation in Sec.
IX. Furthermore, we calculate the relaxation times for the spin moments and compare them with those related to
the usual dissipative quantities. In Sec. X, in order to establish a connection with the phenomenology of heavy-ion
collisions, we give the expression for the Pauli-Lubanski vector, which is the observable used to quantify the particle
spin polarization. Finally, in Sec. XI we also present the Navier-Stokes limit of the second-order equations of motion,
before concluding this work with a summary and an outlook.

We use the following notation and conventions, a · b = aµb
µ

, a
[µ

b
⌫]

⌘ a
µ

b
⌫

� a
⌫

b
µ

, a
(µ

b
⌫)

⌘ a
µ

b
⌫

+ a
⌫

b
µ

, g
µ⌫

=
diag(+,�,�,�), ✏0123 = �✏

0123

= 1, and repeated indices are summed over. The dual of any rank-2 tensor Aµ⌫ is
defined as Ãµ⌫ ⌘ ✏µ⌫↵�A

↵�

.

II. KINETIC THEORY WITH SPIN

In this section we give a brief review of the kinetic theory for massive spin-1/2 particles developed in Refs. [7, 74],
which will be used to derive hydrodynamical equations of motion in the following sections. All information about the
microscopic theory is contained in the spin-dependent distribution function f(x, p, s), which depends on space-time
coordinate xµ, four-momentum pµ, and the spin vector sµ and is uniquely defined in terms of the Wigner function
for spinor fields, see Refs. [7, 74] for details. Its dynamics is described by the generalized Boltzmann equation

p · @f = C[f ] , (1)

where C[f ] is the collision term. As shown in Refs. [7, 74] this collision term contains a nonlocal part, which allows to
convert vorticity into spin. Neglecting a contribution from pure spin exchange without momentum exchange (which
will be justified below), it reads explicitly

C[f ] =

Z

d�
1

d�
2

d�0 W [f(x+�
1

, p
1

, s
1

)f(x+�
2

, p
2

, s
2

)� f(x+�, p, s)f(x+�0, p0, s0)] , (2)

where the integration measure

d� ⌘ d4p �(p2 �m2)dS(p) (3)

denotes integration over the extended phase space, with

dS(p) ⌘
p

p2p
3⇡

d4s �(s · s+ 3)�(p · s) . (4)

Phase space measure
Space-time shift: “side-jump” 
[Chen, Son, Stephanov (2015)]
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Spin DOF: Matrix Valued Spin 
Dependent Distributions (MVSD)

Relativistic MVSD for fermion in QFT

Relativistic MVSD can be parameterized in terms un-polarized 
distributions and Spin Density Matrix (polarization part) 

Un-polarized dist. Spin polarization 
dist.

Four-vectors of three 
basis directions in rest 
frame of q and 𝒒8 (one is 
the spin quantization 
direction)

MVSD: 
Sheng, Weickgenannt, et al. (2021); 
Sheng, QW, Rischke (2022)

Pauli matrices 
in spin space 
(rs-space)

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics



• For massive fermions, spin is independent degree of freedom. We use 
Closed-Time-Path (CTP) or Schwinger-Keldysh formalism.

• Wigner function in terms of MVSD at leading and next-to-leading order 

11

Spin Boltzmann equation for massive fermions

Chou, Su, Hao, Yu, 
Phys. Rep. (1985); 
Blaizot, Iancu,
Phys. Rep. (2002)

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics

Wigner transformation for spin-1/2 fermions
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• Kadanoff-Baym’s equation in terms of on-shell two-point 
function

• With two-point functions being expressed in terms of MVSDs, 
the Boltzmann equation with spin DOF can be derived from 
Kadanoff-Baym equation

12

Spin Boltzmann equation for massive fermions 
(with collisions)
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• At leading order spin Boltzmann equation (SBE) with local collision 
terms

• At next-to-leading order, SBE describes how 𝒇 𝟏 (𝒙, 𝒑) evolves for given 
𝒇 𝟎 (𝒙, 𝒑) with space-time derivatives of  𝒇 𝟎 (𝒙, 𝒑)
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Spin Boltzmann equation for massive fermions

Sheng, Speranza, Rischke, QW, Weickgenannt (2021)
spin transport for massive fermions from KB equation 
was also studied in: 
Yang, Hattori, Hidaka (2020); Wang, Zhuang (2021)

Convenient for 
simulation ! 

determined by 
leading order SBE

𝒇(𝟎)(𝒙, 𝒑)
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• Axial vector component of WF (spin vector) has many contributions

• Thermal vorticity

• Shear viscous tensor

• Fluid acceleration

• Gradient of chemical 
potential

• Electromagnetic fields

14

Polarization from different sources 
in QKT with Wigner functions (without collisions)

Hidaka, Pu, Yang (2018); Yi, Pu, Yang (2021)

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics

Fu, Liu, et al., (2021); 
Becattini, et al, (2021); 



Relativistic Spin Dynamics based on
Spin Kinetic Equation (SKE) with 

MVSDs for vector mesons 

15

Sheng, Oliva, Liang, QW, et al., 2206.05868, 2205.15689

Review on QKE and SKE based on Wigner functions:
Hidaka, Pu, QW, Yang, Prog. Part. Nucl. Phys. 127 (2022) 103989 

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics
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• Relativistic MVSD for vector meson in QFT

• RSBE for fusion (coalescence) and dissociation process 𝒒𝒒8 ↔
𝑽 can be simplified as 

16

RSBE in MVSD for vector meson: 
fusion and dissociation process in

In rest frame of vector 
meson: 𝝐𝝀	is polarization 
3-vector and 𝒏𝒙	, 𝒏𝒚	, 𝒏𝒛 are 
three basis directions

Coalescence 
collision kernel

Dissociation 
collision kernel

polarization vector of vector meson
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MVSD or spin density matrix element for 
vector mesons

Forml solution to MVSD (spin density matrix) for vector mesons

where the coalescence collision kernel 𝑪𝒄𝒐𝒂𝒍
𝝁𝝂 is given by 

Sheng, Lucia, Liang, QW, et al, 
2205.15689, 2206.05868 

Covariant 
polarization 
phase space 
distributions 
for 𝒒 and 𝒒8

un-polarized distributions for 𝒒 and 𝒒8

BS wave 
function
for VM
[Roberts et al 
(2019, 2021)]

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics

Sheng, Lucia, Liang, QW, et al, 2205.15689, 2206.05868 
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Spin density matrix element for vector mesons

Spin density matrix (normalized MVSD) for vector mesons

For 𝝓 meson, covariant polarization phase space distributions for 𝒔
and 𝒔< appearing in 𝑪𝒄𝒐𝒂𝒍

𝝁𝝂 have the form

field strength 
tensor of 𝝓 field

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics
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Spin density matrix element for vector mesons

The fusion (coalescence) collision kernel 𝑪𝒄𝒐𝒂𝒍
𝝁𝝂 can be evaluated in the 

rest frame of 𝝓 meson, which gives 𝝆𝟎𝟎
𝝓

Features: (1) Perfect factorization of x and p dependence; (2) Perfect 
cancellation for mixing terms (protected by symmetry): all fields appear 
in squares, i.e. 𝝆𝟎𝟎

𝝓 measures fluctuations of fields. Surprising results! 

All fields with prime are 
defined in the rest frame 
of 𝝓 meson

spin quantization direction

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics

rest frame
of 𝝓 meson
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Lorentz transformation for 𝝓 fields

We can express 𝝆𝟎𝟎
𝝓 in terms of 𝝓 fields in the lab frame and obtain the 

dependence on momenta of 𝝓 mesons through Lorentz transformation

where                      and  
Then we obtain factorization form 𝝆𝟎𝟎

𝝓 	 in terms of lab-frame fields 

momentum 
averagethree basis 

directions
in lab frame

space-time 
average

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics
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Spin density matrix element for vector mesons

Sheng, Lucia, Liang, QW, et al, 
2205.15689, 2206.05868 

(a) The STAR's data on phi 
meson's 𝝆𝟎𝟎

𝒚 (out-of-plane, red 
stars) and 𝝆𝟎𝟎𝒙 (in-plane, blue 
diamonds) in 0-80% Au+Au
collisions as functions of collision 
energies. The red-solid line and 
blue-dashed line are calculated 
with values of 𝑭𝑻𝟐 and 𝑭𝒛𝟐 from 
fitted curves in (b). 

(b) Values of 𝑭𝑻𝟐 (magenta 
triangles) and 𝑭𝒛𝟐 (cyan squares) 
with shaded error bands 
extracted from the STAR's data 
on the phi meson's 𝝆𝟎𝟎

𝒚 and 𝝆𝟎𝟎𝒙 in 
(c). The magenta-dashed line
(cyan-solid line) is a fit to the 
extracted 𝑭𝑻𝟐 (𝑭𝒛𝟐) as a function of 
𝒔𝑵𝑵� 	 (see the text). 

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics
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Spin density matrix element for vector mesons

Contour plot of 𝝆𝟎𝟎
𝒚 − 𝟏/𝟑 for 𝝓 mesons 

as a function of 𝒌𝒙 and 𝒌𝒚 in 0-80% 
Au+Au collisions at 𝒔𝑵𝑵� = 𝟐𝟎𝟎 GeV.  

Calculated 𝝆𝟎𝟎
𝒚 (out-of-plane) and 𝝆𝟎𝟎𝒙

(in plane) of 𝝓 mesons as functions of 
the azimuthal angle 𝝋 in 0-80% Au+Au
collisions at 𝒔𝑵𝑵� = 𝟐𝟎𝟎 GeV. Shaded 
error bands are from the extracted 
parameters 𝑭𝑻𝟐 and 𝑭𝒛𝟐. 

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics
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Spin density matrix element for vector mesons

Calculated 𝝆𝟎𝟎
𝒚 (solid line) of 

𝝓 mesons as functions of 
transverse momenta in 0-
80% Au+Au collisions at 
different colliding energies 
in comparison with STAR 
data. Shaded error bands are 
from the extracted 
parameters 𝑭𝑻𝟐 and 𝑭𝒛𝟐 . 

Sheng, Lucia, Liang, QW, et al, 
2205.15689, 2206.05868 

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics
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Take-home message and Questions for discussions

Take-home message
• 𝑷𝚲 measures the fields (net mean field), 𝝆𝟎𝟎

𝝓 measures field 
squared (field correlation or fluctuation). 

• The 𝝓 field is induced by current of pseudo-Goldstone boson 
during the hadronization

Questions to be answered in the future: 
• Any connection with QCD sum rules and QCD vacuum 

properties? Any connection with quark or gluon condensates 
(trace anomaly)? 

• Implication for J/Psi polarization (gluon fields)?
• Any connection with effects from glasma fields? (Kuma, 

Mueller, Yang, 2023)
• Other contributions from hydro quantities [Li, Liu (2022);  

Wagner, Weickgenannt, Speranza (2022)]

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics



Ideal spin hydrodynamics with 
Wigner functions

25

H.-H. Peng, J.-J. Zhang, X.-L. Sheng, QW, Chin. Phys. Lett. 38, 116701 (2021)
[Feature: (1) Rigorous power counting scheme; (2) Analytical solution of 
Wigner function to the 2nd order; (3) Exact evolution equations for spin 
hydro variables to the 2nd order]

Earlier works:
Florkowski, Friman, Jaiswal, Speranza, Phys.Rev. C97, 041901 (2018)
Florkowski, Friman, Ryblewski, Speranza, Phys.Rev. D97, 116017 (2018)

Review:
Florkowski, Kumar, Ryblewski, Prog.Part.Nucl.Phys. 108, 103709 (2019)

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics
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Quantum kinetic equation and Wigner functions

Weickgenannt, Sheng, Speranza, QW, Rischke (2019) 
Sheng, Weickgenannt, Speranza, Rischke, QW (2021)

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics

• The kinetic equation of Wigner function can be derived from the 
Dirac equation

• Power counting Wigner function at O(1)
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• The 1st and 2nd order corrections in space-time gradient for the 
Wigner function can be obtained by solving the kinetic equation

• The appearance of 𝜹𝑾 is a result of the uncertainty principle for 
quantum particles with non-local correlation. These corrections 
include the electric dipole moment induced by an 
inhomogeneous charge distribution, the magnetization current, 
and the off-mass-shell correction.
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The 1st and 2nd solutions to Wigner functions

Peng, J.-J. Zhang, X.-L. Sheng, QW (2021)

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics



• The MVSDs in thermal equilibrium are assumed to be in the 
form [Becattini, Chandra, Del Zanna, Grossi, Ann. Phys. (2013)]

• The current density, the energy-momentum tensor (density), 
and the spin tensor (density) can be obtained from vector and 
axial vector components of WF

28

MVSDs and conservation law

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics
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• Constitutive relations for current, energy momentum and spin 
tensor to second order in Kn and 𝝌𝒔

• The equations of motions for 𝜷𝝁, 𝝃, 𝝎𝝁𝝂

29

Evolution equations for hydro variables

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics

depend on 
spin potential 𝝎𝝁𝝂

spin tensor

evolution equation for 
spin potential 



• Here the terms in l.f.s. of the evolution equition for 𝝎𝝁𝝂 are

• where 𝑪𝒊	(𝒊 = 𝟏, 𝟐, 𝟑, 𝟒) are analytical function of hydro variables 
(𝜷, 𝝃, 𝜽, 𝜷̇, 𝝃̇)

30

MVSDs and conservation law

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics

Peng, J.-J. Zhang, X.-L. Sheng, QW (2021)



Hattori, Hongo, et al., PLB(2019); Li, Stephanov, Yee, PRL(2021); 
Fukushima, Pu, PLB (2021); Bhadury, Florkowski, et al., PRD(2021); 
Weickgenannt, Wagner, et al., PRD(2022); She, Huang, et al., 
Sci.Bull. (2022); many others ……..

First order viscous spin hydrodynamics

1. Introduce spin potential term 𝝎𝝁𝝂𝑺𝝁𝝂 into Gibbs-Duhem
relation, assume constitutive relation for spin tensor 
𝑺𝝁𝝂[𝒖𝜶,𝝎𝜶𝜷]

2. Introduce anti-symmetric term into EM tensor 𝑻𝒂𝒔𝒚𝒎
𝝁𝝂 [𝒒𝜶, 𝝓𝜶𝜷]

3. From entropy principle (divergence of entropy current should 
be non-negative), one obtains expressions for 𝒒𝝁 𝒖𝜶,𝝎𝜶𝜷 and 
𝝓𝝁𝝂 𝒖𝜶,𝝎𝜶𝜷 . 
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Viscous spin hydrodynamics

Qun Wang (USTC), Spin polarization: from kinetic theory to hydrodynamics



Summary

32

Spin hydrodynamics
Local and global
equilibrium of spin

Spin Boltzmann 
equation with local and 
non-local collisions

Wigner function 
approach as 
quantum kinetic 
theory in phase 
space


