Experimental Overview of Heavy Flavor Dynamics and Jet quenching in Small Systems

Deepa Thomas

22 June 2023

The University of Texas at Austin

Introduction

- Heavy quarks (charm and beauty) are primary produced in hard scattering processes with large momentum transfer
- Production cross-sections is calculated in pQCD utilizing a factorization approach.

Fractorization theorem

 $f_i(x_i, \mu_F)$ pdf

non-perturbative Initial condition from data $d\sigma$ hard x-section Hadronization Parton shower non-perturbative perturbative perturbative phenomenology + fit to data (e+e-, e-p)

$$\frac{d\sigma^D}{dp_T^D}(\mu_F,\mu_R) = PDF(x_1) \ PDF(x_2) \ \times \ \frac{d\sigma^c}{dp_T^c} \ \times \ D_{c\to D}(z=p_D/p_c)$$

Measurements of heavy flavor particles (open HF hadrons, Quarkonia) -> test the pQCD calculations and provide input for the data driven npQCD quantities.

Deepa Thomas

System size dependence

pp

- Test and constraint pQCD calculations and phenomenological models.
- Multi parton interactions (MPI)
- Study correlation between hard processes and soft underlying event

Study collective effects —> small QGP droplet?

This talk:

- Heavy flavor production in pp and p-A collisions in MB and vs. multiplicity
 - open charm and beauty, charmonium and bottomonium \bullet
- Measurements studying heavy-flavor fragmentation and hadronization
- Search for jet quenching effects in small systems

*Only a selection of results

Charm hadron cross-section

Test pQCD calculations with charm hadron and charmonium cross-sections

- p_T and η differential cross-section measurements performed for open charm, J/ Ψ , Ψ (2S) at different energies.
- pQCD based calculations describe the open charm cross-sections within large uncertainties.
- Charmonium production, both J/ Ψ and Ψ (2S), described by NLO NRQCD calculations.

Deepa Thomas

Beauty hadron cross-section

Test pQCD calculations with beauty hadron and bottomonium cross-sections

- pQCD calculations describe the cross-sections within large uncertainties.
- Bottomonium production well described by NLO NRQCD calculations.

• p_T and η differential cross-section measurements performed for b->D⁰, B mesons, Y(1S), Y(2S), Y(3S) at different energies.

Multiplicity dependent production in pp

Study correlations between heavy-flavor production and soft underlying event

Multiplicity dependent production in pp

• Percolation, Coherent Particle Production (CPP) and the 3-Pomeron Color Glass Condensate models agree with data in both rapidity intervals.

- Similar multiplicity dependence for $\Psi(2S) / J/\Psi$
- PYTHIA describes the data

Multiplicity dependent production in pp

Study correlations between heavy-flavor production and soft underlying event

- Linear dependence for Y(nS) vs multiplicity at forward rapidity
- Coherent Particle Production (CPP) model best describes the data
- Understanding of these measurements not straight forward due to several components
 - UE modeling, auto correlation effects, p_T spectra vs multiplicity
 - Benchmark models on many of these aspects to better constraint

Charm production in p-A

Study cold nuclear matter effects and multiplicity dependence with D mesons

• Q_{pPb} in 0-20% centrality class compared to Transport models with QGP droplet does not describe the data.

Deepa Thomas

Beauty production in p-Pb

Study cold nuclear matter effects with B hadrons

- R_{pPb} of b->D⁰ and B hadrons consistent with unity in mid-rapidity and suppression at forward rapidity.
- Models with CNM effects describes the data.

Charmonium production in p-A

Study cold nuclear matter effects and final state effects with J/ Ψ and Ψ (2S) - nPDF, CGC, energy loss in nucleus, final state interactions with co-moving medium or a QGP

- Strong suppression at low p_T and at forward rapidity for J/Ψ
- $R_{pA} \sim 1$ at high p_T
- No energy dependence
- Models with different nPDFs, CGC describe data.

Deepa Thomas

- $\Psi(2S)$ is more suppressed than J/ Ψ at backward rapidity.
- Models that include final state interactions leading to charmonium breakup (comover interaction model) describe the data.

Charmonium production in p-A

Multiplicity dependent nuclear medication factor for J/Ψ

- Backward: Q_{pPb} increases with p_T reaching a plateau for $p_T > 5$ GeV/c
 - value of plateau highest for most central collisions.
- Forward: Q_{pPb} is < 1 at low p_T ; values increasing to 1 with p_T
 - Strong centrality dependence observed —> stronger suppression in central collisions

- Models with CNM effect, coherent energy loss and thermal model with QGP describe data in forward rapidity within large uncertainties.
- All models fails to describe the p_T dependence in backward rapidity.

Charmonium production in p-A vs multiplicity

- Backward rapidity: difference in R_{pA} for J/ Ψ and Ψ (2S)
- Forward rapidity: similar R_{pA} trend for J/ Ψ and $\Psi(2S)$
- Transport model with QGP and comover interaction model predicts similar suppression pattern for $\Psi(2S)$

Bottomonium production in p-A

Study cold nuclear matter effects and final state effects with Y(nS)

- All Y(ns) states shows suppression in p-A collisions; R_{pPb}(Y(1S)) > R_{pPb}(Y(2S)) > R_{pPb}(Y(3S)) • No y dependence for all states; slightly higher suppression at low p_T for all states.
- Predictions using the CNM effects + comover interaction model (CIM) shows similar ordered suppression.

Bottomonium production in p-A vs multiplicity

Multiplicity dependent nuclear medication factor for Y(1S)

• Q_{pPb} of Y(1S) independent of $\langle N_{coll} \rangle$ at backward and forward rapidity.

Hadronization

Study heavy-flavor hadronization using baryons

 Λ_c/D^0 ratio higher (x4-5) values at low p_T than e⁺e⁻; approaches e+e- at high p_T

pQCD based calculations constrained to e+e- data:

- works for mesons but **not baryons**

Same trend for both charm and beauty hadrons

Hadronization

Study heavy-flavor hadronization using baryons

Fragmentation Fractions

PRD 105, L011103 (2022)

Fragmentation fractions from all ground state charm hadrons.

Large increase in c $-> \Lambda_c$ and c $-> \Xi_c$ w.r.t e+ e-

More than 1/3rd of charm quarks hadronizes to baryons.

Fragmentation functions not universal among different collision systems.

Fragmentation Function, D mesons

Study charm jets and fraction of jet momentum carried by D mesons

- provide insight into charm fragmentation

Parton shower and hadronization

- D⁰-jets measured for different R
 - described by PYTHIA and POWHEG MC simulations.
- $z^{ch} \sim 1$ for low p_T^{Jet} and R =0.2
 - D⁰ is the only constituent
- z^{ch} distribution much softer for larger R
 - more activity inside the jet.
- z^{ch} well described by PYTHIA and POWHEG at high p_T^{Jet}
 - small deviations observed at low p_T^{Jet} especially for POWHEG

Fragmentation Function, J/ψ

Fragmentation Function, b-> J/ψ

00000

Fragmentation Function, charm baryon

Study charm jet fragmentation function to baryons

Softer fragmentation of charm quarks to Λ_c compared to D⁰ mesons.

-> charm-baryon production is favored in the presence of higher particle multiplicity originating from jet fragmentation and underlying event

MC models:

- PYTHIA 8 Monash employs lund string fragmentation, tuned on e+e- data, predicts harder fragmentation than data
- PYTHIA 8 with CR mechanism gives a better description

Jet shape and composition

Study HF jet radial profile and composition using HF-charged particle azimuthal distribution

HF-h $\Delta \phi$ distribution at LO:

- Near Side (NS): fragmentation of the tagged HF quark
- Away Side (AS): fragmentation of the other quark
- Transverse Region : Underlying event

Significant deviation between Λ_c -h and D-h low p_T

• probably as a consequence of softer fragmentation to Λ_c giving larger particle multiplicity inside the jet.

Near-side Away-side

- PYTHIA 8 tunes underestimates NS and AS peaks
- JETSCAPE with hybrid hadronization better describes the data (need better precision)

Search for jet quenching in small systems

Several QGP like signatures in high multiplicity pp and p-A collisions; but several questions remain.

- $v_2 > 0$ at high p_T but $R_{pA} \sim 1$.
- $-v_2(D) \sim v_2(J/\psi); v_2(B) \sim 0$
 - CGC calculations qualitatively agree with the data.

QGP in small system? -> jet quenching is a necessary consequence but expected to be small.

- R_{pA} affected by biases in T_{pA} calculations -> limits sensitivity to jet quenching.
- Several alternate searches proposed

Dennís Perepelítsa Mon@11am

Jet quenching in small systems

Search for jet quenching in high multiplicity pp collisions using hadron-jet acoplanarity

Comparing distributions of $\Delta \phi$ between high p_T hadron trigger and correlated recoil jets in MB and HM events

Deepa Thomas

$$\Delta_{\text{recoil}} \left(\Delta \varphi \right) = \frac{1}{N_{\text{trig}}} \frac{dN_{\text{jet}}}{d\Delta \varphi} \Big|_{\text{TT}\{20,30\} \& p_{\text{T,jet}}^{\text{ch}}} - c_{\text{ref}} \cdot \frac{1}{N_{\text{trig}}} \frac{dN_{\text{jet}}}{d\Delta \varphi} \Big|_{\text{TT}\{6,7\} \& p_{\text{T,jet}}^{\text{ch}}}$$

Jet quenching in the QGP expected to broaden $\Delta \phi$ distribution due to in-medium multiple scattering.

- Significant broadening and suppressed of back-to-back correlation observed in HM events.
- PYTHIA 8 shows similar suppression pattern —> effect not due to jet quenching
 - bias on the HM event selection

More discussion on jet quenching in small systems

Isobel Kolbe and Carlota Andres *Thur@11.30am, 12pn*

Summary and outlook

Heavy quarks are excellent tools to study small systems

- What we have learnt:
 - Cross-sections in pp collisions are described by pQCD based calculation. **
 - R_{pPb} described by models that include CNM effects and final state interactions. *
 - No strong evidence of heavy-flavor suppression in high multiplicity events.
 - Fragmentation functions not universal across systems.
- ✤ Questions:
 - Origin of collectivity in small systems.
 - Further test/constraint models with more differential study of HF production and fragmentation. Jet substructure, higher state and exotic hadron production, ...

***** Future:

- New data at LHC and RHIC will allow more differential measurements.
- More studies on collectivity possible with p-O collisions

Thanks to Barbara Trzeciak, Debojit Sarkar, Isobel Kolbe, Jasmine Brewer, Laura Havener, Nima Zardoshti, Raghav Elayavalli, Rongrong Ma for input and discussions

Aleksas Mazelíauskas Thur@2pn

Backup

Fixed target measurements

Study heavy flavor production at lower \sqrt{s} in a fixed-target mode

- D meson, J/ Ψ cross-section measured in p-Ne \sqrt{s} =68.5 GeV, p-He at \sqrt{s} =86.6 GeV, and in p-Ar at \sqrt{s} =110.4 GeV.
- NRQCD based model calculations needs recalling to compare the shape of the distribution.
- $\Psi(2S) / J/\Psi$ ratio measured and is compatible with other p-A measurements for small values of A.

Non-prompt D meson cross-section

Deepa Thomas

Y(ns) R_{pPb}

Hadronization, charm-strange baryons

Study heavy-flavor hadronization using baryons

Additional challenges for models to describe charm baryons containing strange quarks

Hadronization studies vs multiplicity

_c/D0 ratio increases with multiplicity in pp

Qualitatively reproduced by **PYTHIA8 with CR-BLC** \rightarrow interplay of CR and MPI

Deepa Thomas

Coalescence process tends to saturate in p-Pb collisions - p-Pb data close to high multiplicity pp

Exotic particle production

Study nature of exotic hadrons

- tetra quark composed of a diquark-anti diquark bound state or a hadrocharmonium state with two light quarks orbiting a charmonium core

Final state interactions with co-moving particles leads to breakup of X_{c1} at high multiplicity.

Large hadronic density in p-Pb and Pb-Pb allows quark coalescence affecting X_{c1} production.

