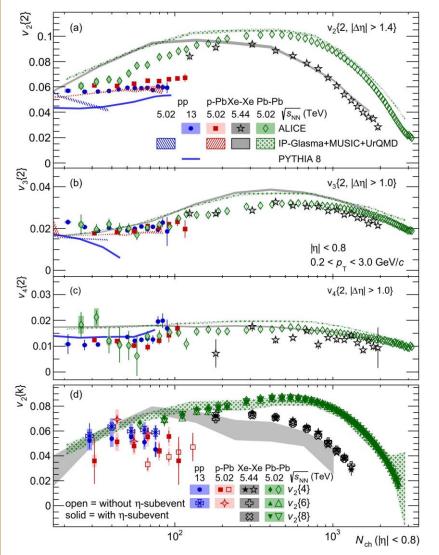


Opinion of a "perfect liquid" lover

Peter Christiansen Lund University


My answers

- Does IS flow-like correlations (e.g., CGC "flow") play a significant role for v₂, v₃ in small systems?
 - No (see for example morning talks):
 p-Au vs d-Au, but also ee → WW
 - Interesting if Bjoern and Raju agrees
- In my view, all evidence points to IS geometry + FS interactions
 - Consistent with strangeness enhancement where we know that FS interactions are needed

Is it the same mechanism in small and large systems?

PRL 123, 142301 (2019)

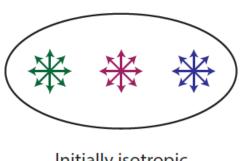
- My logic: large system is reference
 - v₃ driven by fluctuations
 → same small systems ✓
 - v₂ driven by geometry in large system → larger than small systems ✓
- Caveat: AMPT?
 - Escape mechanism
 - Will assume hydro in the following

Are the underlying microscopic processes also perfect?

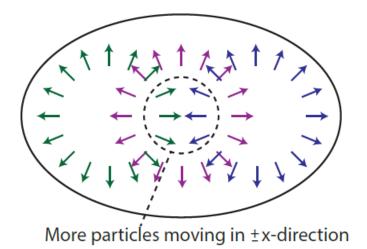
- My logic: small system must contain answer
- Perfect liquid (hydro with $\eta/s \approx 1/4\pi$)
 - Little or no diffusion/dissipation
 - Strongly interacting: mean free path ≈ 0
 - Explains no onset of flow in small systems

Are the underlying microscopic processes also perfect?

- My logic: small system must contain answer
- Perfect liquid (hydro with $\eta/s \approx 1/4\pi$)
 - Little or no diffusion/dissipation
 - Strongly interacting: mean free path ≈ 0
 - Explains no onset of flow in small systems
- Almost reversible (why I fell in love with it)
- A hard lover?


Link

Link



Weakly coupled kinetic theory: non-perfect flow

https://arxiv.org/abs/1803.02072

Initially isotropic momentum distribution

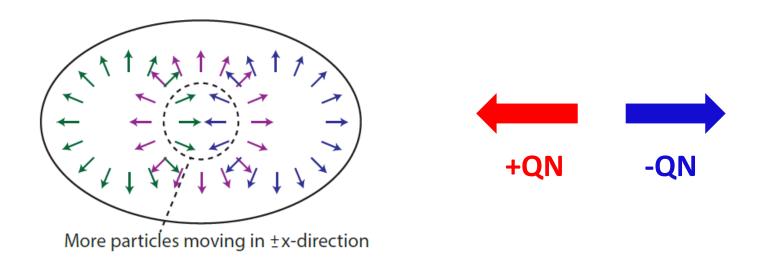
Abstract: "... As a non-vanishing mean free path is indicative of non-minimal dissipation, this challenges the perfect fluid paradigm of ultra-relativistic nucleus-nucleus and hadron-nucleus collisions."

 My opinion: very ambitious effort (e.g., IS+geometry → hydro), but also high price!

How do we make progress?

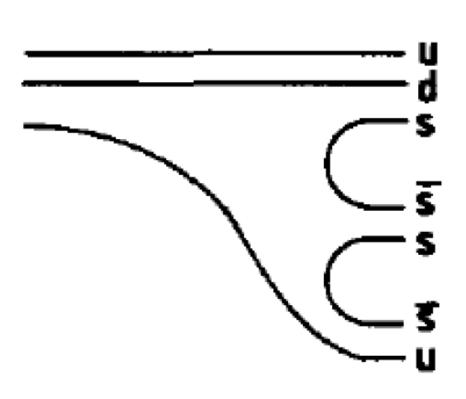
My opinion:

- Focus less on describing the data as well as possible and more about <u>unique signatures</u>
- Focus less on measuring "more of the same" and more about new observables

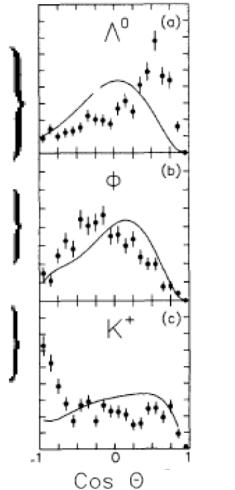


How do we make progress?

- My opinion:
 - Focus less on describing the data as well as possible and more about <u>unique signatures</u>
 - Focus less on measuring "more of the same" and more about new observables
 - Alternative descriptions such as
 Angantyr/Ropes/shoving offer unique
 opportunities to look at our amazing
 achievements from a different perspective!
 - Next idea is based on our local CLASH!
 - CLASH workshop write up: <u>EPJ A 56 (2020) 11, 288</u>


Proposing another observable: Quantum Number (QN) correlations

- Focus on QN that are pair produced
 - Strangeness, Baryon number (LHC)
- Can we observe a "non-minimal dissipation"?



Same idea used to validate string models

EVIDENCE FOR POMERON SINGLE-QUARK INTERACTIONS IN PROTON DIFFRACTION AT THE ISR

R608 Collaboration

Phys.Lett. 163B (1985), 267

Solid lines are calculations for isotropic phasespace

Example:

Ξ-K correlation functions

Trigger on : Ξ (ssd)

Measure where balancing QN ends up:

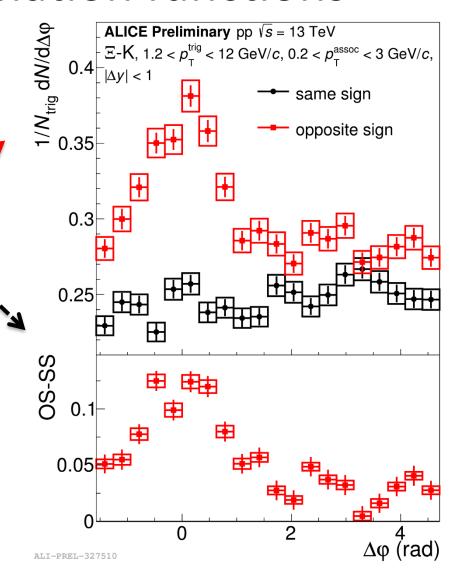
$$K^+$$
 $(u\bar{s}), \bar{p}$ $(\bar{u}\bar{u}\bar{d}), \bar{\Lambda}$ $(\bar{u}\bar{d}\bar{s}), \bar{\Xi}$ $(\bar{s}\bar{s}\bar{d})$

Subtract the uncorrelated production via the same QN correlations:

$$K^{-}(s\overline{u})$$
, $p(uud)$, $\Lambda(uds)$, $\Xi(ssd)$

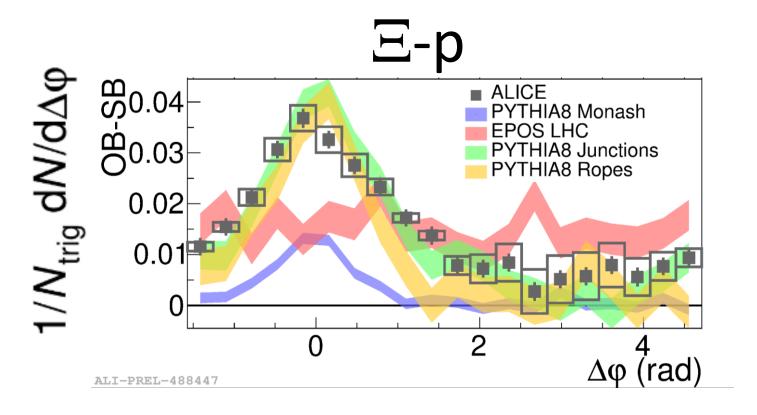
Example:

Ξ-K correlation functions

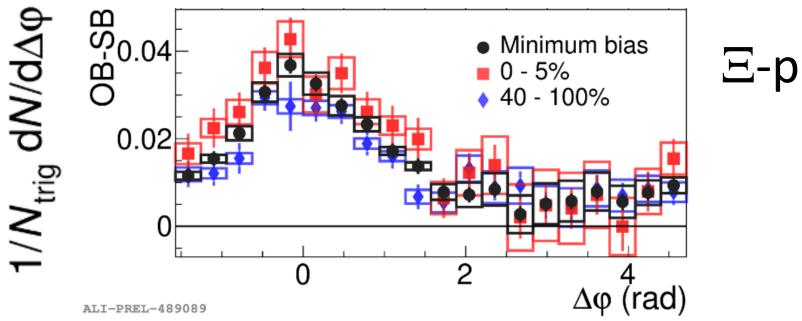

Trigger on : Ξ (ssd)

Measure where balancing QN ends up:

 K^+ $(u\bar{s}), \bar{p}$ $(\bar{u}\bar{u}\bar{d}), \bar{\Lambda}$ $(\bar{u}\bar{d}\bar{s}), \bar{\Xi}$ $(\bar{s}\bar{s}\bar{d})$


Subtract the uncorrelated production via the same QN correlations:

 $K^{-}(s\overline{u}), p (uud), \Lambda (uds), \Xi (ssd)$


Results in MB pp collisions

Microscopic production mechanism can be constrained!

Little multiplicity dependence

- No change in production mechanism (?)
- No increasing diffusion/dissipation (thermalization?)
 - The correlations appear to be perfect!
 - What is deconfinement for a perfect liquid?

Thank You!