Topical discussions about small systems

R. Venugopalan B. Schenke, H. Song & P. Christiansen

Evaluation on the fluid behavior for large to small systems

Low PT region

- -observables
- -tools

Intermediate PT region

- -observables
- -tools

Question to the 4 panellists:

Is the underlying physics identical in small and large systems?

IS geometry shapes/fluctuations -> collective momentum correlations via strong FS interactions?

Low Pt region

-observables: v2 v3 mass ordering of v2 C2{4}, etc

Low Pt region

-observables: v2 v3 mass ordering of v2 C2{4}, etc

-tools: hydrodynamics, kinetic theory, CGC....

Low PT region: fluid behavior

<u>Large systems</u>: hydrodynamics and hybrid model are great success, make powerful predictions & extracted the QGP viscosity.

Small systems: hydrodynamics naturally describe many soft observables

Low PT region: fluid behavior

<u>Large systems</u>: hydrodynamics and hybrid model are great success, make powerful predictions & extracted the QGP viscosity.

<u>Small systems</u>: hydrodynamics naturally describe many soft observables, **However**, there is still C₂ {4} puzzle (in pp collisions, etc).

W. Zhao, Y. Zhou, H. Xu, W. Deng and H. Song, Phys. Lett. B 780, 495 (2018); B. Schenke, C. Shen, and P. Tribedy, arXiv:1908.06212

Low PT region: fluid behavior

<u>Large systems</u>: hydrodynamics and hybrid model are great success, make powerful predictions & extracted the QGP viscosity.

<u>Small systems</u>: hydrodynamics naturally describe many soft observables, **However**, there is still C₂ {4} puzzle (in pp collisions, etc).

heavy flavor does not have enough flow

Evaluation on the fluid behavior for large to small systems

-Low Pt region

-observables

-tools

-Intermediate PT region

-observables

-tools

-Intermediate P_T region

-observables (approx.) NCQ scaling

-tools: Hydro-Col-Frag model

Hydro.	Coalescence, fragmentation	fragme	entation
0 3G	eV 50	GeV	P_T

Thermal hadrons (VISH2+1 hydro):

Coalescence hadrons (Coal Model):

-thermal-thermal, thermal-hard & hard-hard parton coalescence.

Fragmentation hadrons (LBT):

Zhao, Ko, Liu, Qin & Song, Phys. Rev. Lett. 125 7 072301(2020)

Intermediate PT region: small systems

- -At intermediate p_T, Hydro-Coal-Frag model obtains an approximate NCQ scaling
- -Without coalescence, underestimates the $v_2(p_T)$ violating the NCQ Scaling of v_2 at intermediate p_T ,
- -Strongly indication of partonic degree of freedom in small system
- -Support collective flow at low P_T

Zhao, Ko, Liu, Qin & Song, Phys. Rev. Lett. 125 7 072301(2020)

Intermediate PT region: large systems

-CoLBT-hydro with Hydro-Coal-Frag works well for PID flow from 0 to 8 GeV.

-Quark coalescence is important for Pb+Pb collisions at intermediate pr ragion.

Zhao, Chen, Luo, Ke & Wang. Phys. Rev. Lett. 128 2 022302(2022).

Evaluation on the fluid behavior for large to small systems

Low Pt region

- -observables
- -tools

Intermediate PT region

- -observables
- -tools

Question to the 4 panellists:

Is the underlying physics identical in small and large systems?

IS geometry shapes/fluctuations -> collective momentum correlations via strong FS interactions?

Is the underlying physics identical in small and large systems?

Can one fluid rule it all? (for p-p p-Pb and Pb-Pb collisons)

Low P_T region

-Hydrodynamics can simultaneously describe v2, v3 and v4 for p-p, p-Pb and Pb-Pb collisions.

Is the underlying physics identical in small and large systems?

Can one fluid rule it all? (for p-p p-Pb and Pb-Pb collisons)

Low PT region

-**However**, the description of C2{4} become worse and worse from p-Pb to p-p collisions

Is the underlying physics identical in small and large systems?

Can one fluid rule it all? (for p-p p-Pb and Pb-Pb collisons)

- -The NCQ scaling become worse from p-Pb to p-p collisions
- -Fragmentation become important tends to break-up the NCQ scaling

Is the underlying physics identical in small and large systems?

Can one fluid rule it all (min.pp, UPC, ee)?

OBSERVABLES	A-A	p—A (high mult.)	pp (high mult.)	(low mult.)	UPC	ер	e+e- (high mult.)	e+e-
Near-side ridge yield	1 ,2]	[30,32,33]	(30,31)	(34]	_	X [74,75]	[77]	X [76]
Anisotropic flow	[3,4]	[36,37,38,39]	[35,37]	[30]	[72,73]	X [74,75]	7 [77]	_
Multiparticle cumulants	7 [5]	[40-45]	[40,41,45]	_		_	_	
Mass ordering	[6]	[47-49]	[46,48]	_	_	_	_	_

-Not enough flow data to evaluate the fluid behavior

Large systems: traditional hydrodynamics are great success

Small systems: hydrodynamics and the fluid behavior is not that good

-Small systems may approach or beyond the limit of hydro; The situation is worse for smaller systems Wu ... Song, paper in preparation.

Is the underlying physics identical in small and large systems?

Can one fluid rule it all? (for p-p p-Pb and Pb-Pb collisons)

Small systems

- -Phonemically, hydrodynamics and the fluid behavior is not that good
- -Fragmentation/mini-jets become more & more important for smaller systems
- -Small systems may approach or beyond the limit of hydro
- -Isotropization & thermalizations is slower for small systems

Is the underlying physics identical in small and large systems?

Can one fluid rule it all? (for p-p p-Pb and Pb-Pb collisons)

Small systems

- -Phonemically, traditional hydrodynamics is no longer that powerful
- -Fragmentation/mini-jets become more & more important for smaller systems

8.68

- -Small systems may approach or beyond the limit of hydro
- -Isotropization & thermalizations is slower for small systems

No (maybe, don't know): Are there alternative models (eg CGC) compatible &consistent with all measured data?

How can we experimentally discriminate between alternatives?

Comments & Discussions

Hydrodynamic side:

- -Isotropization & thermalizations for Large and small systems (need more efforts)
- -Properly treat pre-equilibrium stage /isotropization for small systems
 - -Anisotropic hydrodynamics

M. Alqahtani, et al Phys. Rev. Lett. 119(2017)042301

-Hybrid approach IP-Glasma+hydro

B.Schenke, et al Phys Lett B 803 (2020) 135322

-Hybrid approach core+ corona

Y. Kanakubo, Y. Tachibana, T. Hirano. Phys.Rev.C 106 (2022) 5, 054908

-initial state fluctuations for various systems 70-80 60-70 50-60 40-50 30-40 20-30 10 20 0.1

Comments & Discussions

Hydrodynamic side:

- -Systematically evaluate isotropization & thermalizations from large to small systems
- -Properly treat pre-equilibrium stage / isotropization for small systems

Experimental and theoretical side:

- -The formation of fluid in small system can not be convincingly evaluated by few flow observables, together with model calculations without predictions
- -More soft observables to evaluate flow in small systems (p-p UPC e-e...)
- -Put more efforts on intermediate P⊤ region to evaluate partonic flow

Connection to other field:

-Can cold atom physics helps to evaluate the system size dependence on isotropization, thermalizations / evaluate the emergence of flow from dilute to dense systems?