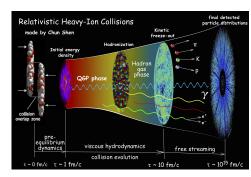
Recent results in particle production and flow from Bayesian analysis

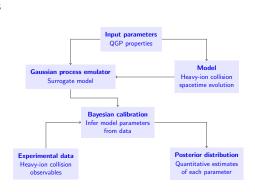
Govert Nijs

June 22, 2023



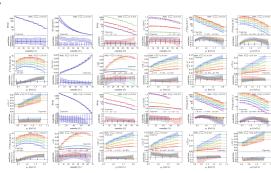
The status of the field

Introduction 000000

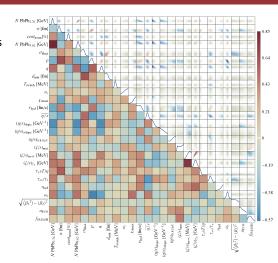

- The general picture of the stages of a heavy ion collision is known.
- Theoretical modelling follows these stages:
 - TRENTo or IP-Glasma for the initial state.
 - Free streaming for the pre-hydrodynamic stage.
 - Viscous hydrodynamics with temperature dependent shear and bulk viscosity.
 - SMASH or UrQMD as a hadronic afterburner.
- Bayesian analysis gives a data-driven approach to understand each stage in more detail.

[Sorensen, Shen, 1304,3634]

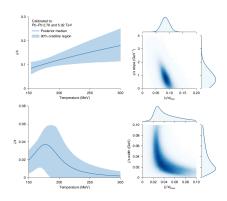
- In principle, Bayesian analysis is simply a fit to data.
- In practice the process is more complicated:
 - Generate a large number of randomly chosen parameter sets called design points.
 - Run the model for each one to obtain the prior.
 - Train the emulator
 - Run the MCMC to obtain the posterior.
- The posterior then is a list of likely parameter sets.


- In principle, Bayesian analysis is simply a fit to data.
- In practice the process is more complicated:
 - Generate a large number of randomly chosen parameter sets called design points.
 - Run the model for each one to obtain the prior.
 - Train the emulator.
 - Run the MCMC to obtain the posterior.
- The posterior then is a list of likely parameter sets.

Introduction 000000


- In principle, Bayesian analysis is simply a fit to data.
- In practice the process is more complicated:
 - Generate a large number of randomly chosen parameter sets called design points.
 - Run the model for each one to obtain the prior.
 - Train the emulator.
 - Run the MCMC to obtain the posterior.
- The posterior then is a list of likely parameter sets.

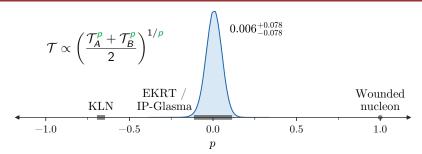
- In principle, Bayesian analysis is simply a fit to data.
- In practice the process is more complicated:
 - Generate a large number of randomly chosen parameter sets called design points.
 - Run the model for each one to obtain the prior.
 - Train the emulator.
 - Run the MCMC to obtain the posterior.
- The posterior then is a list of likely parameter sets.



Uses of Bayesian analysis: viscosities

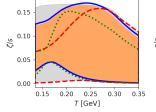
We know the QGP phase is described by viscous hydrodynamics.

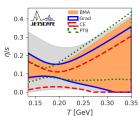
Introduction


- We know exactly what the free parameters are, i.e. η/s , ζ/s , . . .
- We can use Bayesian analysis to find data-preferred values for these parameters.
- The values of the parameters provide an interface with microscopic theories of the QGP.

Uses of Bayesian analysis: parameterized phenomenology

- For the initial state, there is no single widely accepted model.
- With a phenomenological model such as TRENTo, aspects of microscopic models can be tested, such as the scaling shown here, parameterized by *p*.
 - IP-Glasma and EKRT are ruled in.
 - KLN and wounded nucleon are ruled out.

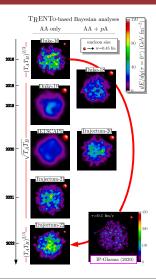




Introduction

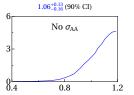
Uses of Bayesian analysis: deciding between models

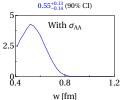
- One can take this idea a step further, and actually compare different models.
- Here shown are different particlization schemes.
- By taking into account how well each model fits, one can even take a weighted average over models, known as Bayesian model averaging.



4 D F 4 P F 4 P F 4 P

The history of TRENTo modelling in Bayesian analyses

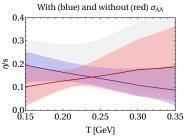

- The TRENTo model is the most widely used for Bayesian analyses so far.
- Latest iteration has in some sense returned to the first iteration shown.
 - The nucleon has returned to a small size.
 - The energy deposition has gone back to $T^{00} \propto (\mathcal{T}_A \mathcal{T}_B)^{2/3}$.
- In this talk, I will cover this and other progress since 2021, including:
 - Improvements in the pre-hydrodynamic stage.
 - Bayesian analyses using IP-Glasma instead of TRENTo.
 - 3+1D Bayesian analyses.
 - Efforts to connect heavy ion collisions to nuclear structure

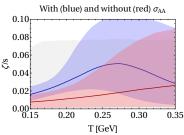

Introduction 00000

Fitting to the pPb and PbPb cross sections

- In the TRENTo model, the nucleon size is described by the Gaussian radius w.
- Previous analyses favored $w \approx 1 \, \text{fm}$.
 - This leads to a 3σ discrepancy in σ_{PbPb} .
- Fitting to the *p*Pb and PbPb cross sections lowers *w* to 0.6 fm.
 - \bullet σ_{PbPb} discrepancy is reduced to 1σ .
 - Many other observables fit slightly worse.
- Smaller width is now compatible with our knowledge of the proton.

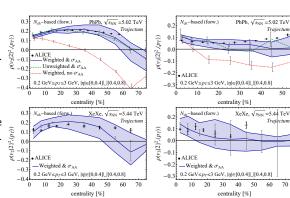
w [fm]




	$\sigma_{PbPb}[b]$	$\sigma_{pPb}[b]$
with σ_{AA}	$\textbf{8.02} \pm \textbf{0.19}$	2.20 ± 0.06
without σ_{AA}	8.95 ± 0.36	2.48 ± 0.10
ALICE/CMS	7.67 ± 0.24	2.06 ± 0.08

Implication for viscosities

- Including σ_{AA} reverses the preferred slope of specific shear viscosity η/s .
- Similar findings to IP-Glasma based Bayesian analysis.
- Bulk viscosity ζ/s increases when including σ_{AA} .
 - Smaller nucleons cause larger radial flow.
 - \blacksquare ζ/s increases to compensate so that $\langle p_T \rangle$ agrees with experiment.

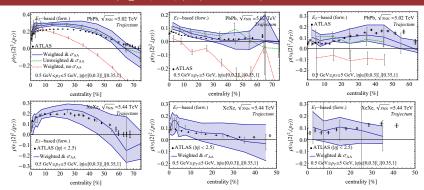


Implication for $\rho(v_2^2, \langle p_T \rangle)$ (ALICE)

Pearson correlation coefficient $\rho(v_2^2, \langle p_T \rangle)$ between v_2^2 and $\langle p_T \rangle$ is sensitive to the nucleon size.

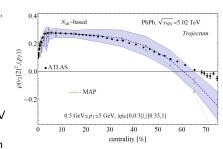
Nucleon size 000000

- Postdiction without fitting to σ_{AA} is qualitatively wrong:
 - $\rho(v_2^2, \langle p_T \rangle)$ goes negative already at 30% centrality.
 - $\rho(v_3^2,\langle p_T\rangle)$ has the wrong sign.
- Fitting to σ_{AA} results in a much improved agreement with ALICE.



Nucleon size 000000

Implication for $\rho(v_2^2, \langle p_T \rangle)$ (ATLAS)

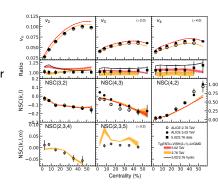


- Still some tension with ATLAS:
 - Kinematic cuts are different.
 - Centrality determination is different.
 - Important to match the precise experimental procedure.

A detailed look at centrality

- Both ALICE and ATLAS determine centrality in the forward region.
- Detectors cannot resolve individual tracks.
 - ALICE signal is proportional to N_{ch} .
 - ATLAS signal is proportional to $\sum E_T$.
- Measurement is sensitive to these details.
- Here we compare using a centrality measurement based on charged tracks.
 - Tracks used have $0.5 \, \text{GeV} < p_T < 5 \, \text{GeV}$ and $|\eta| < 2.5$.
 - Enables an apples-to-apples comparision between theory and experiment.
 - Price to pay is autocorrelation, but this is present on both sides.

See poster S. Bhatta

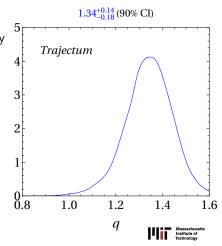


Fitting to 'difficult' observables

Nucleon size

- We saw that fitting to new observables can lead to new insights.
- Which observables can be used is limited by statistics.
- Jyväskylä group has included several statistically difficult observables in their fit:
 - Normalized symmetric cumulants NSC(n, m).
 - Non-linear flow coefficients $\chi_{k,lm}$.
 - Symmetry plane correlations $\rho_{k,lm}$.
- Latest *Trajectum* fit includes:
 - Normalized symmetric cumulants NSC(n, m).
 - $v_2^2 p_T$ correlator $\rho(v_2^2, \langle p_T \rangle)$.

See poster C. Mordasini

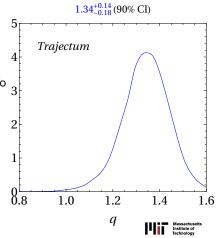


Energy deposition in the initial state

■ Nuclear thickness functions $\mathcal{T}_{A/B}$ deposit matter into the initial state energy density \mathcal{T} as follows:

$$\mathcal{T} \propto \left(rac{\mathcal{T}_A^p + \mathcal{T}_B^p}{2}
ight)^{q/p} \stackrel{p o 0}{=} (\mathcal{T}_A \mathcal{T}_B)^{q/2}.$$

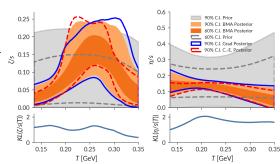
- Previous analyses implicitly set q = 1.
- The fit to experimental data favors $q \approx 4/3$.
 - Previous default q = 1 is disfavored.
 - Binary scaling q = 2 is ruled out.
 - $\mathbf{q} = 4/3$ indicates that $\sqrt{\mathcal{T}_A \mathcal{T}_B}$ behaves like an entropy density.


IP-Glasma scales as follows:

$$\mathcal{T} \propto \frac{\mathcal{T}_A \mathcal{T}_B (2\mathcal{T}_A^2 + 7\mathcal{T}_A \mathcal{T}_B + 2\mathcal{T}_B^2)}{(\mathcal{T}_A + \mathcal{T}_B)^{5/2}}.$$

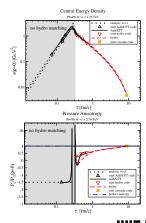
■ This is not a limit of the modified T_RENTo formula, but for $\mathcal{T}_A \approx \mathcal{T}_B$ it reduces to

$$\mathcal{T} \propto (\mathcal{T}_A \mathcal{T}_B)^{3/4}$$
.


- This corresponds to q = 1.5, which is compatible with the posterior.
- In the future, one could explicitly use the full formula and test whether that is preferred.

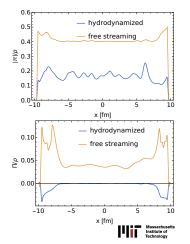
Replacing TRENTo by IP-Glasma

- T_RENTo is only a phenomenological model, whereas IP-Glasma is microscopically motivated.
- Results for viscosities are similar to latest analyses using TRENTo.
- Interestingly, the slope of η/s is negative.
 - Also seen in latest TRENTo analysis.
 - Could potentially be related to nucleon size, which is small in both analyses.



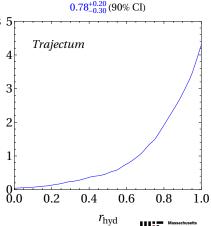
Fast hydrodynamization

- AdS/CFT simulations of the initial stage suggest fast hydrodynamization:
 - $\pi^{\mu\nu} = 2\eta\sigma^{\mu\nu}$ applies quickly after the initial interaction.
 - By analogy, in a strongly coupled setting we expect $\Pi = -\zeta \nabla \cdot u$ to also apply quickly.
- In free streaming however, the initialization of $\pi^{\mu\nu}$ and Π is qualitatively different.
 - Free streaming absolute value of shear stress $|\pi| \equiv \sqrt{\pi_{\mu}^{\mu}}$ is larger than the strongly coupled result.
 - Free streaming bulk pressure Π is much smaller than the strongly coupled result, and has a different sign.



Fast hydrodynamization

- AdS/CFT simulations of the initial stage suggest fast hydrodynamization:
 - $\pi^{\mu\nu} = 2\eta\sigma^{\mu\nu}$ applies quickly after the initial interaction.
 - By analogy, in a strongly coupled setting we expect $\Pi = -\zeta \nabla \cdot u$ to also apply quickly.
- In free streaming however, the initialization of $\pi^{\mu\nu}$ and Π is qualitatively different.
 - Free streaming absolute value of shear stress $|\pi| \equiv \sqrt{\pi_{\mu}^{\mu}}$ is larger than the strongly coupled result.
 - Free streaming bulk pressure Π is much smaller than the strongly coupled result, and has a different sign.

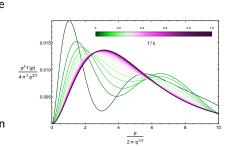


Weak vs. strong coupling in the pre-hydrodynamic stage

- From our two models, we obtain two stress 5 tensors:
 - \blacksquare $T_{\rm fe}^{\mu\nu}$ from free streaming (no interactions).
 - $T^{\mu\nu}_{hvd}$ from the hydrodynamized solution (strong coupling).
- Previous analyses used $T_{fs}^{\mu\nu}$.
- We interpolate with a new parameter r_{hvd} :

$$T^{\mu\nu} = r_{\mathsf{hyd}} T^{\mu\nu}_{\mathsf{hyd}} + (1 - r_{\mathsf{hyd}}) T^{\mu\nu}_{\mathsf{fs}}.$$

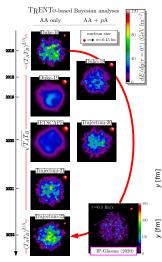
 $r_{hvd} = 1$ is strongly favored over $r_{hvd} = 0$, indicating a preference for strong coupling.



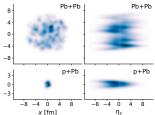
Adiabatic hydrodynamization

See posters K. Boguslavski; A. Mikheev; V. Nugara

- In most microscopic descriptions of the pre-hydrodynamic stage, hydrodynamization is driven by attractor solutions.
- Adiabatic hydrodynamization shows promise as a powerful framework to describe attractors.
- Work is ongoing to incorporate such an attractor solution into *Trajectum*, which will result in an updated Bayesian analysis.

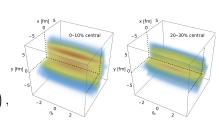


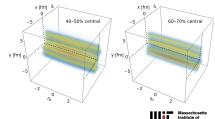
See parallel R. Steinhorst Tue. 17:10



Beyond boost invariance

- We now look at some analyses outside of this timeline.
- Most Bayesian analyses so far have been assuming boost invariance.
- One analysis by the Duke group exists, but it is from 2016.
 - Much progress has happened since then.
 - An update would be timely.

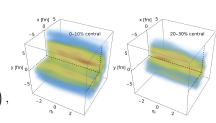


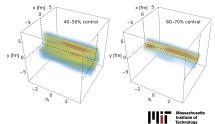

- With Trajectum, we took the Duke ansatz and added extra longitudinal fluctuations in energy deposition.
 - Nucleons deposit energy into thickness functions as

$$\mathcal{T}_{A/B} = \sum_{\text{wounded}} \gamma \exp\left(-|\mathbf{x} - \mathbf{x}_i|^2/2w^2\right),$$

with γ drawn from a Gamma distribution.

- We replace $\gamma \to \gamma(\eta_s)$, where $\gamma(\eta_s^A)$ and $\gamma(\eta_s^B)$ are correlated as $\exp(-|\eta_s^A \eta_s^B|/\eta_{corr})$.
- The correlation length η_{corr} is a new parameter to be varied in the Bayesian analysis.
- Bayesian analysis is underway!

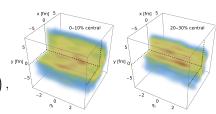

Longitudinal fluctuations

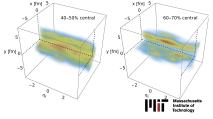

- With *Trajectum*, we took the Duke ansatz and added extra longitudinal fluctuations in energy deposition.
 - Nucleons deposit energy into thickness functions as

$$\mathcal{T}_{A/B} = \sum_{\text{wounded}} \gamma \exp\left(-|\mathbf{x} - \mathbf{x}_i|^2/2w^2\right),$$

with γ drawn from a Gamma distribution.

- We replace $\gamma \to \gamma(\eta_s)$, where $\gamma(\eta_s^A)$ and $\gamma(\eta_s^B)$ are correlated as $\exp(-|\eta_s^A - \eta_s^B|/\eta_{corr})$.
- The correlation length η_{corr} is a new parameter to be varied in the Bayesian analysis.
- Bayesian analysis is underway!

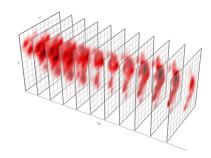

Longitudinal fluctuations


- With Trajectum, we took the Duke ansatz and added extra longitudinal fluctuations in energy deposition.
 - Nucleons deposit energy into thickness functions as

$$\mathcal{T}_{A/B} = \sum_{\text{wounded}} \gamma \exp\left(-|\mathbf{x} - \mathbf{x}_i|^2/2w^2\right),$$

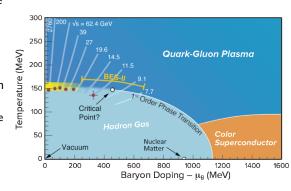
with γ drawn from a Gamma distribution.

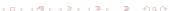
- We replace $\gamma \to \gamma(\eta_s)$, where $\gamma(\eta_s^A)$ and $\gamma(\eta_s^B)$ are correlated as $\exp(-|\eta_s^A \eta_s^B|/\eta_{\rm corr})$.
- The correlation length η_{corr} is a new parameter to be varied in the Bayesian analysis.
- Bayesian analysis is underway!



Fireball and fragmentation

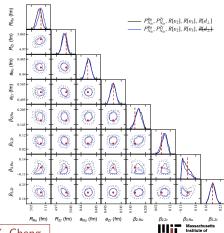
- The Duke group extended the TRENTo model to 3+1D by considering a fireball part and a fragmentation part.
- In the present analysis linearized hydrodynamics was used.
- Full model Bayesian analysis in progress.


See parallel, D. Soeder Tue. 16:10



Jumping to the other side of the phase diagram

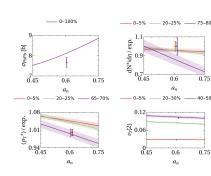
- Heavy ion collisions take place at $T \gg \mu_B$.
- The nuclei we collide exist at $T \ll \mu_B$.
- The structure of the nuclei leaves an observable imprint in heavy ion collisions.
 - Heavy ion collisions become a new laboratory for dense nuclear matter.
 - Shapes of nuclei can be inferred
 - We can infer neutron star properties.



Isobars: a first step

- We show a Bayesian fit to *initial state* quantities known to correlate well with $dN/d\eta$, $\langle p_T \rangle$, v_2 and v_3 .
- Size R, skin depth a and deformation parameters β_n can be extracted.
- This is a first step:
 - The fit is to the model itself, a closure test.
 - Only the initial state is modelled, not a full hydro model.
 - Full hydro for isobars is expensive, would need statistical trick to be viable.

See parallel M. Luzum Tue. 15:20; poster Y. Cheng

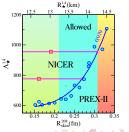

4 D F 4 D F 4 D F 4 D F

Neutron skin

- In a ²⁰⁸Pb nucleus, neutrons sit further from the center than protons.
 - This is quantified by the *neutron skin*:

$$\Delta r_{np} = \langle r^2 \rangle_n^{1/2} - \langle r^2 \rangle_p^{1/2}.$$

- The proton distribution is well known from electron scattering.
- The neutron distribution is harder to pin down.
- We vary the Woods-Saxon skin depth parameter for neutrons a_n in a Bayesian analysis.
 - In the emulator we can see that various observables are sensitive to an



- Shown is the posterior for the value of the ²⁰⁸Pb neutron skin.
 - Value obtained is compatible with PRFX II and ab initio nuclear theory.
 - Slightly stronger constraint than PREX II ($\Delta r_{np} = 0.283 \pm 0.071$).
- Inferred value for the neutron skin. has direct implications for the radius of a $1.4 M_{\odot}$ neutron star.
- Completely orthogonal method to other measurements.

See plenary G. Giacalone Wed. 9:30

Outlook

- Many active groups working on Bayesian analysis:
 - Duke,
 - JETSCAPE,
 - Trajectum,
 - Jyväskylä,
 - . . .
- Many insights gained from Bayesian analysis:
 - Size of nucleons.
 - Energy deposition in the initial state.
 - Nature of the pre-hydrodynamic stage.
 - Values of viscosities, temperature dependence.
 - Freeze-out prescriptions.
 - **...**
- Many questions are still open, and Bayesian analysis will remain essential to answer them!

Outlook