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Challenge in HIC and Machine Learning

• Uncertainties in HIC modeling

• Multiple parameters entangle with 
multiple observables

• How to disentangle different factors
to reveal fundamental physics from      
the dynamical environment?

Fig: arXiv:1804.04649QGP
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1, QCD matter EoS identification from Heavy Ion 
Collisions with Deep Learning

Nature Communications 9 (2018), no.1, 210

JHEP 12 (2019) 122

Eur.Phys.J.C 80 (2020) 6, 516

Phys. Lett. B 811 (2020)

JHEP 21 (2021) 184

Phys. Rev. D 103 (2021) 11, 116023

arXiv:2211.11670

With Longgang Pang, Nan Su, Yilun Du, Jan Steinheimer, Lijia Jiang, Lingxiao Wang,
Hanna Peterson, Horst Stoecker, Xinnian Wang, etc.,



Direct inverse mapping? CNN make the road

2L.G.Pang, K. Zhou, N.Su et al., Nature Commu.9 (2018), no.1, 210

Conclusion : Information of early dynamics can survive to the end of the hydrodynamics and encoded with

in the final state raw spectra, immune to evolution’s uncertainties, with deep CNN we can decode it back.

• Conventional obs. hard to distinguish

• Strongly influence from initial fluctuations

and other uncertainties

• 95% event-by-event accuracy!

• Robust to initial conditions, eta/s
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Into more realistic cases

Hadronic cascade

(UrQMD considered)

Non-equilibrium transition

(Baryon Clumping, spinodal)
Detector effects

(Hits/Tracks, Point-Net)

Y.L. Du, K. Zhou, et at., 
Eur.Phys.J.C 80 (2020) no.6,516 

J.S, L.G. Pang, K. Zhou, et at., 
JHEP 12,122(2019)

M.O.K, J.S, K. Zhou, et at., 
Phys. Lett. B 811, 135872
JHEP 21 (2021) 184
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The EoS parameterization, the flow and transverse kinetic energy measurements
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• Hadronic cascade dominant

• UrQMD model adapted to any

density dependent EoS   →

via density dependent potential 

Eur.Phys.J.C82(2022)5,417

CMF +

Polynomial

Evidence :  proton’s v2        and     transverse kinetic energy

• Gaussian Process Emulator : 𝑂𝑏𝑠𝑖 𝜽 ~ 𝐺𝑃(𝜇(𝜽), 𝜅(𝜽, 𝜽′))

• The trained emulator predict observables well: 𝑹𝟐 ~𝟎. 𝟗M.OK, J. Steinheimer, H. Stoecker, K. Zhou, arXiv:2211.11670
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EoS reconstruction Closure tests, with real data, Predictability
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● Posterior ~ Likelihood * Prior ● With real experimental data

Test the extracted EoS on different observables (not used in Bayesian analysis)
arXiv:2211.11670

68% posterior
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2, Initial Condition Inference

With Manjunath O.K, Jan Steinheimer, Andreas Redelbach, Horst Stoecker, 
Yi-Lin Cheng, Shuzhe Shi, Long-Gang Pang, Xin-Nian Wang, Yu-Gang Ma

Phys.Lett.B 811 (2020) 135872

Particles 2021, 4(1), 47-52

arXiv:1906.06429

arXiv:2301.03910



CBM Centrality-Meter with PointNet
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• Experimental data has inherent point cloud structure

• collection of particles as 2D array :

each row = a particle (point) in one cloud

each column = a feature of point

• PointNet based models learn directly from point clouds.

• respects the order invariance of point clouds

• direct processing of experimental data from detector ⇒ ideal online analysis algorithm

• optimal for higher dimensional data

• We consider the CBM experiment as a use case

• Au-Au collisions

• 10 AGeV

• CBM Challenges    →

E Px Py Pz pid

6.84 1.07 4.5 6.83 211

40.4 0.06 0.54 40 321

… … … … …

Phys.Lett.B 811 (2020) 135872
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End-to-End Online Event Characteristics for CBM with PointNet
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⚫ Data: UrQMD + cbmROOT 

⚫ With hits/tracks, end-to-end 

online EbE b-meter: PointNet

• Quantifies precision

• Polyfit fails for   

central events!

• Similar precision for 

b>3 fm

• Quantifies accuracy

• DL: -0.3 - 0.2 fm for 

b = 2-14fm

• Polyfit fluctuating

Impact 
Parameter

⚫ b is not measurable

⚫ Final state obs to obtain likely distribution with

e.g., MC Glauber and percentiles of Nch
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Phys.Lett.B 811 (2020) 135872



Nuclear Deformation Inference from HIC with DL
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• Nuclear structure (deformation) imaging from High Energy Heavy Ion Collisions

➢ nuclear structure

initial shape/size

hydro flow, <pT>, …

<Slides from Jiangyong Jia, Chunjian Zhang>
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[see talk by Jiangyong@Wed09:00, 
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Deep Learning Nuclear Deformation via regression
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Data: Trento + Matching
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L. Pang, K. Zhou and X. Wang, 

arXiv:1906.06429



DCNN Regression and Attention Mask Analysis
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given by the local entropy density s(x,y). T he geom et-
ric eccentricity in initialstate transform s to m om entum
anisotropy in the final state through relativistic hydro-
dynam ic expansion of the strongly coupled quark gluon
plasm a. To m ake the current m ethod directly applicable
to experim ent,w e m atch the " 2 to v2 through a heuristic
equation [28,29],

v2 = k2" 2 + k
0
2"
3
2 + δ2 (3)

w here the coefficients k2 = 0.2, k02 = 0.1 and δ2 is the
residual that introduces additionally ±10% uniform ly-
distributed random fluctuations.
T he totalentropy is self-norm alized w ith the m ean en-
tropy of the 0 − 1% m ost central collisions for each nu-
clear shape deform ation. T he self-norm alization m akes
the m ethod applicable to experim entaldata because

dN ch/dY |norm ed =
dN ch/dY

hdN ch/dY i0⇠1%
⇡

s0
hs0i0− 1%

. (4)

W e now have 2601 groups of(dN ch/dY |norm ed,v2) dis-
tributions. T he data are divided into 3 groups,80% for
training, 10% for validating and 10% for testing. W e
use data augm entation to enlarge the size of the train-
ing data set. For each distribution,w e random ly sam ple
90% from 50000 data points to create a new im age. T he
data augm entation produces 160000 im ages for training,
16000 for validating and 16000 for testing.

B . D eep regression n etw ork

Conv2D(3x3) -> 56x56x64

4 Residual Block-II ->28x28x128

6 Residual Block-II -> 14x14x256

3 Residual Block-II -> 7x7x512

Global Average Pooling -> 512

Output Dense(2)

3 Residual Block-I -> 56x56x64
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F igure 2: (C olor-online) T he architecture ofthe 34-layer
regression neuralnetw ork using residualand squeeze

excitation blocks.

Show n in F ig.2 is the 34-layer deep convolution neu-
ral netw ork for the regression task. T he residual blocks
m ake it possible to design deep convolution neural net-
w ork for im age classifications. A nd the squeeze excita-
tion operation additionally pushes the im age classifica-
tion to the state-of-the-art. W e verify that the deep

residual neural netw ork designed for im age classifica-
tion also w orks w ell on regression task. O ur inputs are
im ages of 2 dim ensional event-by-event distributions of
(dN ch/dY |norm ed,v2/v2m ax) in 56 ⇥ 56 bins. T he input
im age is first processed using a tw o-dim ensionalconvolu-
tion, then it is fed to a type-I residualbox containing 3
blocks nam ed R esidualB lock-I,w here the output feature
m aps have the sam e transverse size as the input im age.
T he resulted feature m aps are fed to four type-II resid-
ual boxes consecutively. E ach type-II residual box has
3 to 6 blocks nam ed R esidual B lock-II. T he first R esid-
ualB lock-II in each box reduces the w idth and height of
the input feature m ap by a factor of 2. A llthe residual
blocks have one“add”operation and the last“add”layer
has a nam e“add_ 16”. E ach residualblock has 2 C onv2D
layers and in totalthey contribute to 16⇥2 = 32 convo-
lution layers. W e have used globalaverage pooling layer
[30]to get the m ean ofeach feature m ap w ith size 7⇥7
for the 512 channels. T his 512 neurons are connected to
2 neurons in the output layer to m ake predictions for the
nuclear deform ation param eter |β2| and |β4|. O ne rea-
son to use this deep residualneuralnetw ork is to verify
w hether a deep netw ork can learn the sign ofthe param -
eter β2 w here a shallow netw ork has already failed. T he
residual neural netw ork also has better interpretability
than V G G -like netw ork as show n in the paper [31].

C . R egression A ttention M ask for interp retab le
d eep learn in g

Interpretability isthe m ostindispensable consideration
ofthe deep neuralnetw orks w hen it is used in science re-
searches, as w ell as self-driving cars, m edical diagnosis
and governm ent policy m aking. T he interpretability is
defined as the ability to explain or to present in under-
standable term s to a hum an [32]. V isualization, verbal
explanation and clustering ofsim ilar instances are allun-
derstandable representations ofthe deep neuralnetw orks
w ith Interpretability.
T here are m any w ays to visualize w hat has been

learned by the netw ork classifier. For review s see the
book “Interpretable M achine Learning”[33]and surveys
[32, 34–36]. T here are global explanations that explain
the netw ork in the w hole input space by visualizing w hat
each feature m ap learns. T here are also local explana-
tions that explain local features in one specific im age.
W e have designed the “R egression A ttention M ask”al-
gorithm ,w hich provides a localinterpretation ofa given
im age.
For the global explanation, deconvolution is used to

visualize each feature m ap of the deep convolution neu-
ralnetw ork [37–40]. For the localexplanation,there are
m any different m ethods developed based on the assum p-
tion thatone highly com plex m achine learning m odelcan
be locally approxim ated by a linear m odel around one
given input im age. O ne w ay to construct the im portance
m ap is to m easure the probability changes w ith parts

Data: Trento + Matching

51 𝛽2 ∈ −0.5, 0,5 X 51 𝛽4 ∈ −0.2, 0,2 = 2601 groups

• Each generate 100k events with random geometries

in centrality range : 0 ~ 50%

• Regression Attention Mask

• Nuclear deformation encoded in the output of HIC, DCNN can decode

10

10

L. Pang, K. Zhou and X. Wang, 

arXiv:1906.06429



Bayesian Imaging for Nuclear Structure in Isobar Collisions
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• How it works for single system ? (caveat: model dependent)

• Simultaneous inference for isobar systems with ratio?

• Bayesian Inference: Gaussian Process emulator + PCA dim reduction + MCMC

C. Zhang, J. Jia, Phys. Rev. Let. 128, 022301 (2022)

Data: MC-Glauber + Matching (linear response approximation)

• red dots/lines : ground 

truth in mock data

Single system works good

11

arXiv:2301.03910



Simultaneous Reconstruction for Isobar Systems using Ratios of Obs.
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• With purely the Isobar-Ratios, MCMC can not converge to a stationary inference of the nuclear structure

• No unique solution : only ratios ⇏ 𝑛𝑢𝑐𝑙𝑒𝑎𝑟 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 !

12

arXiv:2301.03910



Ratios Plus Single-System Multiplicity Distribution

13

• Single-System Multiplicity makes it possible

• The 𝑑⊥ information is redundant for the inference

• More realistic model, AMPT-based in progress 
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3, Flow analysis & Unsupervised Outlier Detection

With Han-Sheng Wang, Shuang Guo and Guo-Liang Ma, 
Punnathat Thaprasop, Jan Steinheimer and Christoph Herold

arXiv:2305.09937

Phys. Scripta 96(2021)6,064003



Small or Large collision system distinction?

14

p-Pb

Pb-Pb

• Data: list of (Px, Py, Pz, E) from AMPT

• Using 4-momentum point cloud the PCN can 

classify the two systems well

• discrepancy mainly at the p-going direction, 

consistent with :

larger rapidity distribution diff. at larger Nch

14

arXiv:2305.09937



Small or Big collision system ?

15

• Data: list of (Px, Py) from AMPT 

(1) unnormalized

(2) random rotation : remove flow effect

(3) Normalized :

remove pT effects

(4) Normalized and random rotated flow

• With unnormalized 2-momentum, PCN will first fully exploit the pT distribution characteristic of 

the two systems for their distinguishment

• PCN can also capture the flow differences in classifying the two systems (though worse than 

unnormalized case, but works in ensemble manner )
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Small or Big collision system ?
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• Many-body interactions makes contrast medium 

in identifying the two systems’ features

• Isolating flow effects in the distinguishment

• p-Pb and Pb-Pb ensemble distinguishment 

may reflect the v2 and v3 discrepancies

non-flow

anisotropic flow

16



Outlier Detection for HIC
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• Use centrality misclassification as example 

• PCA to reduce dim while keep some reconstruction   →

17

Phys. Scripta 96(2021)6,064003



Outlier detection for HIC
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• Reconstruction Error separate the outlier from background

• Other reduced representation methods: autoencoder with FC or CNN

• Receiver Operating Curve (ROC) quantify outlier detection ability

18



Summary : Inverse Problems

● Physics Priors are needed, coult be put into :

1, training data (Implicit) : DL (network) learn the inverse mapping directly : 

general mapping, avoid case-specific retraining

2, inference process (Explicit) : Chi2 fit+Bayesian inference+Gradient Descent :

Automatic differentiation and Network representation 

If interested, for more discussion for QCD matter exploration with ML see Review: arXiv:2303.15136

Explicit 1-to-1 mapping

Exist, but implicit

Quantity of
Interest

Accessible
Observation



PointNet Models

10

● Work directly on exp. Output

● Event-by-event and online : possible

● Training data :

10^5 Au+Au 10 AGeV events

b ~ (0-16)fm ‘UrQMD → CbmRoot’

Phys.Lett.B 811 (2020) 135872
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