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Life is an Emergent Property

The philosophical concept of “emergent properties": Understanding the individual parts
alone is insufficient to understand or predict system behavior. Thus, emergent properties
necessarily come from the interactions of the parts of the larger system.

Systems © molecule - © cell - @ tissue ~© organ ~ © organ system
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Emergent Phenomena in QCD
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How does the spin of proton arise from quarks and gluons? (Spin puzzle)
What are the emergent properties of dense gluon system?

How does proton mass arise? Mass gap: million dollar question.

How does gluon bind quarks and gluons inside proton?
m We need the 3D information of the quark and gluon inside the proton!

EIC: keys to unlocking these mysteries! Many opportunities are in front of us!




3D Tomography of Proton

[Marquet, 1S2023]

Wigner distributions [Belitsky, Ji, Yuan, 04] Quasiprobability Wxp)
ingeniously encode all quantum information
of how partons are distributed inside hadrons.
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Understanding Nucleon Spin

Jaffe-Manohar decomposition
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Understanding Proton Mass

Mass decomposition [Ji, 95]

quark mass quark energy
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Quark Gluon

M, : quark energy i
M, : quark mass (condensate)

M, : gluon energy e
M, : trace anomaly trace anomaly. _glue energy

[xQCD, Yang, et al, 18]
m Understand and measure each contribution.

m Study the pressure and shear in the energy momentum tensor.




Pressure and Shear forces inside proton

[Shanahan, Delmold, 19]
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m The spatial of static EMT define the stress tensor. It can be decomposed in a traceless part
associated with shear forces s(r) and a trace associated with the pressure p(r).

m s(r) and p(r) are computed in LQCD recently.


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.072003

Saturation Physics (Color Glass Condensate)

Describe Emergent Phenomenon of the ultra-dense QCD cold matter.
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m Gluon density grows rapidly as x gets small. BFKL evolution!

= Resummation of the s In 2 = BFKL equation.

m Many gluons with fixed size packed in a confined hadron, gluons overlap and recombine =
Non-linear QCD dynamics (BK/JIMWLK) => ultra-dense gluonic matter

m Saturation = Multiple Scattering (MV model) + Small-x (high energy) evolution



A Tale of Two Gluon Distributions!

In small-x physics, there are two gluon distributions:[Kharzeev, Kovchegov, Tuchin; 03]
I. Weizsdacker Williams gluon distribution([ Kovchegov, Mueller, 98] and MV model)
IL. Color Dipole gluon distributions: (known for many years)

‘ ‘ m In MV model, these two gluon distributions are different.
—WW gluon
- - = Dipole gluon

m Same perturbative tail when k; > Q.
“A Tale of Two Gluon Distributions” =
“A Tail of Two Gluon Distributions” [B. Zajc]
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m Which gluon distribution to use in a given process?

m Why are there exactly two gluon distributions?
Generalized Universality

"From Y. Kovchegov and C. Dickens.



A Tale of Two Gluon Distributions

Two gauge invariant gluon definitions: [Dominguez, Marquet, Xiao and Yuan, 11]
I. Weizsacker Williams gluon distribution: conventional gluon distributions
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Complementary physics missions in pA and eA collisions.
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Single inclusive hadron productions in pA collisions

p+ A — H + X [Chirilli, BX and Yuan, 12] (Ten-year effort) [Altinoluk, 1S2023]
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m Factorization: 1. collinear to target nucleus; rapidity divergence = BK evolution for
UGD F (k) ;2. collinear to the initial quark; = DGLAP evolution for PDF; 3.
collinear to the final quark. = DGLAP evolution for FFs.
m Kinematic constraint: Subtraction proper amount of logarithms before taking s — oco. I
m Resummation of additional threshold/Sudakov logarithms.




NLO Single Hadron Productions in pA collisions

[Shi, Wang, Wei, Xiao, 21]

[LHCb: 2108.13115]
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Sudakov/Threshold
resummation help
stabilize NLO.

Precision test needs
reliable NLO calculation
from CGC.

Proof of concept for NLO
predictive power.

Agreement with forward
LHCb data.

Rapidity evolution of
Rp Pb-



https://arxiv.org/abs/2112.06975

NLO DIS dijets

[Caucal, Salazar, Schenke, Stebel and Venugopalan, 2304.03304]
see also [Taels, Altinoluk, Beuf and Marquet, 2204.11650]

S @

m Proved factorization at one-loop.

m Resummation of small-z and Sudakov logarithms.

m Provide more reliable predictions for measurements at future EIC.



An analogy to Fraunhofer Diffaction in Optics

[QCD at high energy, Kovchegov and Levin, 12]
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m Treat the hadron target in DIS as a black disk. [Joseph von Fraunhofer, 1821]
m Similar pattern in optics (6" ~ 1/(kR)) and high energy QCD #; ~ %.

m Two difference: 1. o sensitive to gluon distribution; 2. Breakup of the target.

m Use diffractive scattering to study gluon spatial distribution.



Diffractive vector meson production
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Can we measure Wigner distributions?

m Can we measure Wigner distribution/GTMD? Yes, we can!

m Diffractive back-to-back dijets in ep/e A collisions.
[Hatta, Xiao, Yuan, 16]@&E®

m Further predictions of asymmetries due to correlations.

:ngT(:z, qL; I;J_) = ng Symmetric part
+ 2cos(2¢)xW, + -+ Anisotropies

vif, gold, Q= 10 GeV?
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.202301
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.112301

CMS: Dijet photoproduction in UPC (PbPb)

v+ Pb — Jet + Jet + Pb
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B Large asymmetrles between momentum sum ¢ = k:1 L+ k2 n
and difference kl 1L — k‘g | observed!

Indication of additional sources ?

Asymmitries due to FS gluon radiations are important. [Hatta, Xiao, Yuan, Zhou, 21]



https://inspirehep.net/files/32b71a96fdd30ec2fb4362f0605c7124
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.142001

Contributions from final state gluon radiations

[Hatta, Xiao, Yuan, Zhou, 21]@Z®
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.142001

Harmonics of Parton Saturation in Lepton-Jet Correlations at EIC

[Tong, Xiao, Zhang, 23]
Use Fouier Harmonics to analyze and probe saturation effects.
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m Significant nuclear modification of the asymmetries =
compelling evidence for saturation.
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.151902

Origin of Collectivity

[Yen-Jie Lee, 1S2023]: both MPI and High Multiplicity are needed
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Search for collectivity in e*e~ at LEP and in DIS at HERA

Two-Particle Correlations in e* e~ with ALEPH data[Badea et al, 19]
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m No significant long-range correlations is observed. ((ALEPHe e~ — W TV ]?)
Search for collectivity at HERA [H1 Collaboration, 1S2021]
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m No collectivity observed at HERA. Data agree with RAPGAP. Q% > 5GeV?


https://doi.org/10.1103/PhysRevLett.123.212002
https://indico.bnl.gov/event/9726/contributions/45891/attachments/33838/54472/20210415DIS2021-sunc.pdf

Collectivity at EIC?

Two-particle correlations in photonuclear (Pb+Pb) UPC by ATLAS
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m Results for UPC in PbPb collisions. (Mini-EIC)

m WW equivalent photon approximation: Small virtuality, like a plane wave.
m Photons with energy up to 80 GeV at the LHC + the high-energy nuclei.
m What about predictions for the collectivity at the EIC on the horizon?



https://arxiv.org/pdf/2101.10771.pdf

The Structure of Photons

Photons can have a very rich QCD structure
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m Point like (high Q?)
m Partonic

m VMD [Sakurai, 60]
Strong similarity between v* A and pA collisions when v* has a long lifetime.
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Comment: Collectivity in v* A collisions regardless the underlying interpretation.




Collectivity in high multiplicity events in pA (v*A) collisions

Qualitative understanding of high multiplicity events and correlation.

m Fluctuation in parton density

m Many active partons @)

m Correlated multiple scatterings

A CGC model for correlation based on the above three assumptions

m Let us pick two initially uncorrelated collinear partons (say ¢ + q) from proton, and consider
their interactions with the target nucleus.

m Correlation can be generated between them due to multiple interaction.

m Due to Unitarity, the un-observed partons do not affect the correlation of the system.




vy results in v* A collisions from CGC and Hydro

[Shi, Wang, Wei, Xiao, Zheng, 21] [Zhao, Shen, Schenke, 22]
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Both agree with ATLAS UPC data

Partonic structure VS vector meson.

Selecting different )? and 7 bins = handles to change system size and energy.

]
]
m The future EIC may help to unravel the origin of the collectivity in general!
]
]

High multiplicity events in ep collisions at HERA vs e A at EIC.


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.054017
https://arxiv.org/pdf/2203.06094.pdf
https://arxiv.org/pdf/2101.10771.pdf

Summary

m Yet, many questions remained unanswered in QCD!
m Spin, Mass, Dense gluonic matter and 3D imaging, origin of collectivity, etc.

m Cutting-edge EIC will provide us 3D image of protons and heavy nuclei with
unprecedented precision, and bring us new insights.

m Synergy of EIC and Heavy Ion Physics is important for us to find answers to these
questions.




