Simulating heavy quarks and jets in the Glasma

by \mathcal{DA} vramescu

University of Jyväskylä Center of Excellence in Quark Matter

based on PRD 107, 114021

T. Lappi, H. Mäntysaari

University of Jyväskylä

A. Ipp, D. Müller TU Wien V. Greco, M. Ruggieri University of Catania

Initial Stages, June 2023

Instead of motivation

Question: Do the hard probes (HPs) remember the Glasma (IS)?

Poster visitor: No, they don't!

This talk: Reasons not to neglect the IS for HPs transport

Instead of motivation

Question: Do the hard probes (HPs) remember the Glasma (IS)?

Poster visitor: No, they don't!

This talk: Reasons not to neglect the IS for HPs transport

Instead of motivation

Question: Do the hard probes (HPs) remember the Glasma (IS)?

Poster visitor: No, they don't!

This talk: Reasons not to neglect the IS for HPs transport

Overview

Glasma fields hard probes

Many studies (recall C. Andres' talk) \Rightarrow significant impact

This study: Classical colored transport for particles in fields

What fields?

SU(3) real-time lattice Yang-Mills equations What particles?

SU(3) classical charges Wong's equations

Overview

Glasma fields hard probes Effect of the initial stage on the early-produced partons

Many studies (recall C. Andres' talk) \Rightarrow significant impact

This study: Classical colored transport for particles in fields

What fields?

SU(3) real-time lattice Yang-Mills equations

What particles?

SU(3) classical charges Wong's equations

Approach

Prerequisite: Classical lattice gauge theory $\xrightarrow{\text{solver}}$ Glasma fields

Fresh work: Glasma fields $\stackrel{\text{background}}{\longleftrightarrow}$ ensemble of particles $\stackrel{\text{solver}}{\longleftrightarrow}$ colored particle-in-cell

Approach

Prerequisite: Classical lattice gauge theory $\xrightarrow{\text{solver}}$ Glasma fields

Fresh work: Glasma fields $\xleftarrow{\text{background}}$ ensemble of particles $\xleftarrow{\text{solver}}$ colored particle-in-cell

Glasma fields

Relevant scale Q_s Fields dilute after $\delta \tau \simeq Q_s^{-1}$, arrange themselves in correlation domains of $\delta x_T \simeq Q_s^{-1}$

Boost-invariant, highly anisotropic

Particles in YM fields (technicalities)

 $\begin{array}{l} \text{Wong's equations} \leftrightarrow \text{classical equations of motion for particles } (x^\mu, p^\mu, Q) \\ \quad \text{evolving in Yang-Mills fields } A^\mu \end{array}$

CPIC solver $\xrightarrow{\text{assures}} Q \in \mathfrak{su}(3)$, conservation of Casimir invariants

Transport in Glasma

Coordinate trajectories

Momentum trajectories

 $\begin{array}{l} \mbox{Momentum broadening} \\ \langle \delta p_i^2(\tau) \rangle \equiv \langle p_i^2(\tau) \rangle - \langle p_i^2(\tau_{\rm form}) \rangle \end{array}$

Anisotropy $\equiv \langle \delta p_L^2
angle / \langle \delta p_T^2
angle$

Infinitely massive quarks $\langle \delta p_i^2(\tau) \rangle \big|_{m \to \infty} \propto \int_{\tau', \tau''} \langle E_i(\tau') E_i(\tau'') \rangle_{\text{lattice}}$

Dynamical quarks \leftrightarrow finite $m, \tau_{\rm form}$ and p_T \neq Static quarks $\leftrightarrow m \rightarrow \infty$

 $\begin{array}{l} \mbox{Momentum broadening} \\ \langle \delta p_i^2(\tau) \rangle \equiv \langle p_i^2(\tau) \rangle - \langle p_i^2(\tau_{\rm form}) \rangle \end{array}$

Anisotropy $\equiv \langle \delta p_L^2 \rangle / \langle \delta p_T^2 \rangle$

Infinitely massive quarks $\langle \delta p_i^2(\tau) \rangle \big|_{m \to \infty} \propto \int_{\tau', \tau''} \langle E_i(\tau') E_i(\tau'') \rangle_{\text{lattice}}$

Dynamical quarks \leftrightarrow finite $m, au_{
m form}$ and p_T eqStatic quarks $\leftrightarrow m \rightarrow \infty$

 $\begin{array}{l} \text{Momentum broadening} \\ \langle \delta p_i^2(\tau) \rangle \equiv \langle p_i^2(\tau) \rangle - \langle p_i^2(\tau_{\text{form}}) \rangle \end{array}$

Anisotropy $\equiv \langle \delta p_L^2 \rangle / \langle \delta p_T^2 \rangle$

Infinitely massive quarks $\langle \delta p_i^2(\tau) \rangle \Big|_{m \to \infty} \propto \int_{\tau', \tau''} \langle E_i(\tau') E_i(\tau'') \rangle_{\text{lattice}}$

Dynamical quarks \leftrightarrow finite $m, \tau_{
m form}$ and p_T eqStatic quarks $\leftrightarrow m \rightarrow \infty$

 $\begin{array}{l} \mbox{Momentum broadening} \\ \langle \delta p_i^2(\tau) \rangle \equiv \langle p_i^2(\tau) \rangle - \langle p_i^2(\tau_{\rm form}) \rangle \end{array}$

Anisotropy $\equiv \langle \delta p_L^2 \rangle / \langle \delta p_T^2 \rangle$

Infinitely massive quarks $\langle \delta p_i^2(\tau) \rangle \Big|_{m \to \infty} \propto \int_{\tau', \tau''} \langle E_i(\tau') E_i(\tau'') \rangle_{\text{lattice}}$

Dynamical quarks \leftrightarrow finite m, τ_{form} and $p_T \neq$ Static quarks $\leftrightarrow m \rightarrow \infty$

Two particle correlations

(Work in progress)

Sketch of quark pair evolution

Quantifying the decorrelation

Two particle correlations
$$\mathcal{C}(\Delta\eta,\Delta\phi) = \frac{1}{N_{\rm pairs}} \frac{{\rm d}^2 N}{{\rm d}\Delta\eta {\rm d}\Delta\phi}$$

Initial
$$\mathcal{C}(\tau_{\text{form}}) \propto \delta(\Delta \phi - \pi) \delta(\Delta \eta) \xrightarrow[\Delta \tau]{\text{Glasma}} \mathcal{C}(\tau_{\text{form}} + \Delta \tau) \xrightarrow[\text{extract}]{\text{extract}} \sigma_{\Delta \phi}(\Delta \tau), \sigma_{\Delta \eta}(\Delta \tau)$$

Dramatic effect for...

 \ldots slow heavy quarks \Rightarrow correlation immediately washed out

Dramatic effect for...

... slow heavy quarks \Rightarrow correlation immediately washed out

Thank you!