

Collisions (IS2023), Copenhagen.

ATLAS Results at Initial Stages '23

Initial state of the nucleus:

- v_n - $|p_{\rm T}|$ correlations in Pb+Pb and Xe+Xe
- $\gamma\gamma \to \mu^+\mu^-$ in hadronic Pb+Pb collisions
- dijet production in $\gamma + A$

Final state effects in small systems:

- Jet-hadron correlations in p+Pb
- Collective behavior in pp with jets
- Correlation between $\Upsilon(1,2,3S)$ & UE in pp

Parallel talks by

Riccardo Longo (Tue 4:10pm) Peter Steinberg (Wed 2:20pm) Pengqi (Bill) Yin (Wed 4:50pm)

Initial state of the proton:

- Flow decorrelations in pp (and Xe+Xe)
- Correlation between "centrality" and dijet kinematics in p+Pb

Other highlights:

- Systematic studies of parton energy loss
- $\gamma\gamma \to \tau\bar{\tau}$ to constrain $g_{\tau}-2$
- ... many more in <u>ATLAS HI Public Results</u>

Posters by

Melike Akbiyik **Alexander Milov**

Somadutta Bhatta Blair Seidlitz

ATLAS Results at Initial Stages '23'

Initial state of the nucleus:

- v_n $|p_{\rm T}|$ correlations in Pb+Pb and Xe+Xe
- $\gamma\gamma \to \mu^+\mu^-$ in hadronic Pb+Pb collisions
- dijet production in $\gamma + A$

Parallel talks by

Riccardo Longo (Tue 4:10pm) Peter Steinberg (Wed 2:20pm) Posters by **Somadutta Bhatta**

v_n - p_T correlations in Pb+Pb and Xe+Xe

Measure correlation between $v_{2,3,4}$ magnitude and average p_T in Xe+Xe and Pb+Pb

Sensitive to fluctuations in the initial state geometry and thus a good test of IS models

As a bonus, sensitivity to the deformed shape of the colliding nuclei!

v_n - $[p_{\rm T}]$ correlations in Pb+Pb and Xe+Xe

Multi-differential comparison to models:

Trajectum/v-UPSHydro: Trento IC + 2-D hydro

IP-Glasma+MUSIC: saturation + 3-D hydro

v_n - $[p_T]$ correlations in Pb+Pb and Xe+Xe

ATLAS, PRC 107 (2023) 054910

Multi-differential comparison to models: Trajectum/v-UPSHydro: Trento IC + 2-D hydro IP-Glasma+MUSIC: saturation + 3-D hydro Ratio of ρ_2 in Xe+Xe/Pb+Pb picks out the triaxiality of Xe¹²⁹ quadrupole deformation \Rightarrow nuclear structure with heavy ions!

Initial state of the EM fields around nuclei

$$\alpha = 1 - \left| \Delta \phi \right| / \pi$$

 $\gamma\gamma \to \mu^+\mu^-$ processes occurring during a "normal" Pb+Pb collision

Di-muon kinematic relationship modified compared to StarLight/UPC data

⇒ investigate origin and test QED models

Initial state of the EM fields around nuclei

Trends in α and $k_{\perp} = \pi \alpha \left\langle p_{\mathrm{T}} \right\rangle$ broadening reasonably described by QED calculations \Rightarrow total cross-sections are a challenge

Initial state of the EM fields around nuclei

Trends in α and $k_{\perp} = \pi \alpha \left\langle p_{\mathrm{T}} \right\rangle$ broadening reasonably described by QED calculations \Rightarrow total cross-sections are a challenge

No visible influence from strong magnetic fields appearing as a modification vs. $\tanh \left(y \right)$ or $2(\phi - \Psi_2)$

Dijet production in $\gamma + A$ collisions

 $p_{\rm T}^2 = 60 \; {\rm GeV}$

Run: 286717

Event: 36935568

2015-11-26 09:36:37 CEST

Pb+Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

"Clean" environment for precision probes of the nuclear wave function

Access (x_A, Q^2) "gap" between LHC p+A and fixed target data — 10 years before the EIC!

Dijet production in $\gamma + A$ collisions

Fully unfolded in:

- x_A (Bjorken-x in nucleus)
- z_{γ} (momentum fraction of γ or resolved γ fragment)
- H_T (jet E_{T} sum)

Ready for input to global nPDF fits after:

- Final results with reduced jet energy uncertainties
- Modeling of nuclear breakup probabilities

Low- $z_{\gamma} \Rightarrow$ access high- x_A

 $\operatorname{High-}z_{\gamma} \Rightarrow \operatorname{access\ low-}x_{A}$

ATLAS Results at Initial Stages '23'

Initial state of the proton:

- Flow decorrelations in pp (and Xe+Xe)
- Correlation between "centrality" and dijet kinematics in p+Pb

Parallel talks by Riccardo Longo (Tue 4:10pm)

Posters by **Blair Seidlitz**

3-D initial state of a proton-proton collision

 What is the correlation between the longitudinal energy deposition and (initial state) momentum structure in small systems?

In a simple 2-string model, no particular η -dependence to Ψ_2 or $\left|v_2\right|$

• Key input for: understanding exotic systems with C.O.M. offset ($\gamma + A$), comparing experiments with different acceptance (RHIC small systems), etc.

3-D initial state of a proton-proton collision

First measurement of F_2 in pp collisions - magnitude sensitive to assumptions in non-flow subtraction methods ($\bullet \blacktriangle \bullet$)

3-D initial state of a proton-proton collision

First measurement of F_2 in pp collisions - magnitude sensitive to assumptions in non-flow subtraction methods ($\bullet \blacktriangle \bullet$)

Significantly larger decorrelation in *pp* data than a naive two-string picture (AMPT)

Min bias $R_{p\text{Pb}} = 1$, but very strong "centrality" dependence of inclusive jets in Run 1 p+Pb

Magnitude scales with total jet energy at forward rapidity (i.e. Bjorken-x in proton, x_p ?)

Min bias $R_{p{
m Pb}}=1$, but very strong "centrality" dependence of inclusive jets in Run 1 $p{
m +Pb}$

Magnitude scales with total jet energy at forward rapidity (i.e. Bjorken-x in proton, x_p ?)

Potential physical mechanism: a proton with large-x ($\gtrsim 0.1$) parton is "small" and strikes fewer nucleons

Central yield \downarrow , Peripheral yield \uparrow (0-100% $R_{p\mathrm{Pb}}$ unmodified)

Repeat measurement, reconstructing the two leading jets and estimating tree-level (x_p, x_{Pb}, Q^2) in each event

Repeat measurement, reconstructing the two leading jets and estimating tree-level (x_p, x_{Pb}, Q^2) in each event

Perform differential scan in $2 \rightarrow 2$ parton-parton kinematics to map out this physics in detail!

Plot dijet $R_{\rm CP}$ in different kinematic regions vs. $x_{\rm Pb} \Rightarrow$ no clear pattern, not an (initial state) nuclear effect

Plot dijet $R_{\rm CP}$ in different kinematic regions vs. $x_{\rm Pb} \Rightarrow$ no clear pattern, not an (initial state) nuclear effect

Fix x_{Pb} , check dependence on $x_p \Rightarrow$ physics effect originates in the initial momentum state of the proton

ATLAS Results at Initial Stages '23'

Final state effects in small systems:

- Jet-hadron correlations in p+Pb
- Collective behavior in pp with jets
- Correlation between $\Upsilon(1,2,3S)$ & UE in pp

Parallel talks by

Pengqi (Bill) Yin (Wed 4:50pm)

Final state effects on hard probes in p+A/pp?

ATLAS, PRL 124 (2020) 082301 > 0.15 ATLAS pp √s=13 TeV $N_{ch}^{rec} \ge 60$ 0.05 Charged hadron -0.05p_{_} [GeV]

Charged particle v_2 in p+Pb events remains non-zero out to 50 GeV

Heavy charm quarks flow in pp (... but bottom quarks do not)

→ New ATLAS measurements to explore effects on hard partons in small systems

Jet+h in p+Pb: measurement design

We have limits on out-of-jet-cone ΔE - what about hadrons in the jet?

 $p_{\mathrm{T}}^{\mathrm{jet}} > 30 \text{ (60) GeV}$ $p_{\mathrm{T}}^{\mathrm{pet}} > p_{\mathrm{Pb}}$ measure yield of

charged hadrons

Can't use traditional multiplicity-based centrality for a precision E-loss search \Rightarrow use ZDC to select central events

Jet+h in p+Pb: excluding energy loss scenarios...

ATLAS, nucl-ex/2206.01138, in press PRL

 $I_{p\mathrm{Pb}}$ = ratio of per-jet yield in central $p+\mathrm{Pb}$ / pp

Small enhancement on the near side (left), predicted by Angantyr (no QGP)

No significant modification on the away side (right)

$$\Delta E/E = (-0.2 \pm 0.5)\,\%$$
 , with $\left|\Delta E/E\right| < 1.4\,\%$ at 90% confidence level

Interaction between soft and hard processes in pp

Question #1: does the presence of a hard scattering affect the collective behavior?

Question #2: do jet fragments themselves participate in collective behavior?

Interaction between soft and hard processes in pp

ATLAS, nucl-ex/2303.17357, sub PRL

Nominal v₂ values are unaffected if one excludes or includes jet events

similar lack of sensitivity seen in, e.g., Z-boson pp events

Interaction between soft and hard processes in pp

ATLAS, nucl-ex/2303.17357, sub PRL

Nominal v₂ values are unaffected if one excludes or includes jet events

similar lack of sensitivity seen in, e.g., Z-boson pp events

However, v₂ for hadrons from jet fragmentation consistent with zero!

 \rightarrow (nominally) different than what was observed at high- p_T in p+Pb...

Upsilon suppression vs. system size

ATLAS, PRC 107 (2023) 054912

Sequential suppression of excited Υ states in Pb+Pb and p+Pb collisions

 \Rightarrow study correlation b/w Υ states and event multiplicity in 13 TeV pp

Upsilon suppression in ... pp?

Rather than Υ yield as a function of N_{ch} , study $\langle N_{\rm ch} \rangle$ as a function of $\Upsilon p_{\rm T}$ for 1S, 2S, 3S

For $p_{\rm T}^{\Upsilon}$ < 30 GeV, the **1S** is accompanied by more charged particles than the 2S (and 2S > 3S)

"Sequential suppression" as in Pb+Pb?

Non-trivial soft QCD (e.g. color reconnection) physics?

Something to learn about Υ production mechanisms?

ATLAS Results at Initial Stages '23

Peter Steinberg (Wed 2:20pm)

Other highlights:

- Systematic studies of parton energy loss
- $\gamma\gamma \to \tau\bar{\tau}$ to constrain $g_{\tau}-2$
- ... many more in ATLAS HI Public Results

Posters by

Melike Akbiyik

Systematics of parton energy loss

Color charge?

Prong structure?

Path length vs. fluctuations?

Parton mass?

Campaign of measurements in ATLAS to isolate what controls the physics

$\gamma\gamma \to \tau\bar{\tau}$ to constrain $g_{\tau}-2$

Leverage the clean **initial state** of UPC events to make precision measurement of how the tau couples to photons

ATLAS, hep-ex/2204.13478, in press PRL

Measurement in 2018 Pb+Pb data is immediately competitive with world best, and is stat. (not syst.) limited

ATLAS Plans during LHC Run-3

Many potential measurements in the HL-LHC era for Initial Stages topics:

ATLAS Preliminary 1.02 Centrality: 0-5% Projection from Run-2 Pb+Pb $\sqrt{s_{NN}}$ =5.02 TeV 5 nb⁻¹ 0.96 \circ 0.5< p_T <1.0 GeV \Box 1.0< p_T <2.0 GeV 2.0 < p_⊤ < 3.0 GeV
</p> 3.0< p₊ <4.0 GeV</p>

Precision EW-based probes of nPDFs

Statistics-limited soft physics measurements

O+O and p+O explore small systems with a novel geometry

ATLAS Results at Initial Stages '23

Initial state of the nucleus:

- v_n - $|p_{\rm T}|$ correlations in Pb+Pb and Xe+Xe
- $\gamma\gamma \to \mu^+\mu^-$ in hadronic Pb+Pb collisions
- dijet production in $\gamma + A$

Final state effects in small systems:

- Jet-hadron correlations in p+Pb
- Collective behavior in pp with jets
- Correlation between $\Upsilon(1,2,3S)$ & UE in pp

Parallel talks by

Riccardo Longo (Tue 4:10pm) Pengqi (Bill) Yin (Wed 4:50pm) Peter Steinberg (Wed 2:20pm)

Initial state of the proton:

- Flow decorrelations in pp (and Xe+Xe)
- Correlation between "centrality" and dijet kinematics in p+Pb

Other highlights:

- Systematic studies of parton energy loss
- $\gamma\gamma \to \tau\bar{\tau}$ to constrain $g_{\tau}-2$
- ... many more in <u>ATLAS HI Public Results</u>

Posters by

Melike Akbiyik **Alexander Milov**

Somadutta Bhatta Blair Seidlitz

ATLAS, nucl-ex/2211.15257, Accepted JHEP

ATLAS, PRC 92 (2015) 044915 2.5 ATLAS p+Pb 2013, L_{int} = 29 nb⁻¹ $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 10 9 1 1 1 1 1 1 1 1 2 $^{$ Glauber (ω_{σ} =0) 0-10% Centrality 10-40% Centrality 40-90% Centrality — CT10+EPS09 (NLO) Data/Model 0.0 -0.0 ص ص

Rally in Copenhagen, February 2022

Ukrainian embassy in Copenhagen, March 2022