

Giulia Manca,

Universita` degli studi di Cagliari (IT) & I.N.F.N. on behalf of the LHCb collaboration

LHCb DETECTOR AT THE LHC

→ Single arm spectrometer fully instrumented in forward direction 2<n<5

- Designed for b-physics, becoming a General Purpose Detector
- Forward and backward coverage for asymmetric beams
- Precision in the forward region not achievable by others yet

19.06.2023

G.Manca, IS2023

2

FIXED TARGET PHYSICS WITH LHCb

SMOG: System for Measuring the Overlap with Gas

Poster of Camilla De Angelis

- injection of noble gas (He, Ne, Ar) into interaction region
- very simple robust system
- used for a precise luminosity determination
- used for fixed-target physics!

- → Since 2022: SMOG2!
 - standalone gas storage cell at z~-500/-300 mm
- → Up to x100 higher gas density with same gas flow of SMOG1
- → Precise measurement of the gas pressure => luminosity
- → Possibility to run in parallel with pp collisions, and inject not only noble gases
- → Projections for 1y pAr @ 115 GeV :

Int. Lumi. 80 pb-1 Sys.error of J/Ψ xsection ~3% J/Ψ yield 28 M D^0 yield 280 M Λ_c yield 2.8 M Ψ' yield 280 k $\Upsilon(1S)$ yield 24 k $DY u^+u^-$ yield 24 k				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Int. Lumi.			80 pb ⁻¹
	J/Ψ D^0 Λ_c Ψ'	yield yield yield yield	xsection	28 M 280 M 2.8 M 280 k

$p \sim 10^{-7}/10^{-6} mbar$

eam I - Beam 2, Beam I - Gas, Beam 2 - Gas.

- precise vertexing to separate beam-beam and beam-gas strong acceptance effects as a function of the z position
- energy densities between those probed at the SPS and RHIC

Bridge between the SPS and LHC

19.06.2023 G.Manca, IS2023

SMOG2 RESULTS IN 2022 : pAr @ 113 GeV

LHCb EXPERIMENTAL SET-UP

- → LHCb can make a valuable contribution to the study of nucleus-nucleus collisions in the forward region in different configurations
- → Experimental approach:
 - Colliding beam mode
 - Fixed target mode (SMOG)

- In colliding beam mode, the rapidity forward/backward region is covered
- For fixed target running the acceptance is central to backward.

Cold Nuclear Matter $\sqrt{s_{NN}} = 8.2 \text{ TeV}$ $\sqrt{s_{NN}} = 5.0 \text{ TeV}$ $\sqrt{s_{NN}} = 5.0 \text{ TeV}$ Pb

Pb

Pb $\sqrt{s_{NN}} = 110 \text{ GeV}$ Gas

(He,Ne, Ar...)

Pb

Gas (Ne, Ar)

- Peripheral collisions at low pT can be precisely studied in PbPb => Partons largely unconstrained at LHC collisions energy in the forward region
- LHCb can explore the <u>low-Bjorken x</u>region with high precision, especially <u>@low Q</u>2, down to $0 p_T$

LHCb IN SMALL SYSTEMS

Excellent for studying pp/Pb collisions

- Constrain nPDFs at small and large Bjorken-x
- Probe gluon saturation in low-x and low-Q² region
- Test hadronisation mechanisms in the medium
- Study final state effects in medium
- Search for possible QGP droplet formation in small systems
- Unique opportunities with the fixedtarget program
 - \sqrt{s} =69-110 GeV between SPS and RHIC
 - $-3 < y^* < 0$
 - Access nPDF in anti-shadowing region
 - Probe intrinsic charm content in the nucleon
 - Inputs to astrophysics

LHC AND LHCb

OVERVIEW OF LHCb RESULTS

Publications of the Ions and Fixed Target Working Group

[to restricted-access page]

ALL LHCB PUBLICATIONS

OTHER WORKING GROUPS

B DECAYS TO CHARMONIUM

B DECAYS TO OPEN CHARM

CHARMLESS b-HADRON DECAYS b-HADRONS AND QUARKONIA

0-HADRONS AND QUARRONIA

CHARM PHYSICS

FLAVOUR TAGGING

LUMINOSITY

QCD, ELECTROWEAK AND EXOTICA

RARE DECAYS

SEMILEPTONIC B DECAYS

DETECTOR PERFORMANCE

List of papers (Total of 29 papers and 1319 citations)

TITLE	DOCUMENT NUMBER	JOURNAL	SUBMITTED ON	CITED
Measurement of Ξ_c^+ production in pPb collisions at $\sqrt{s_{NN}}=8.16$ TeV at LHCb	PAPER-2022-041	PRL	11 May 2023	
J/ψ and D^0 production in $\sqrt{s_{NN}}$ = 68.5 GeV PbNe collisions	PAPER-2022-011 arXiv:2211.11652 [PDF]	EPJC	21 Nov 2022	2
Charmonium production in pNe collisions at $\sqrt{s_{NN}} = 68.5 \text{ GeV}$	PAPER-2022-014 arXiv:2211.11645 [PDF]	EPJC	21 Nov 2022	3
Open charm production and asymmetry in pNe collisions at $\sqrt{s_{NN}}\!\!=68.5~\text{GeV}$	PAPER-2022-015 arXiv:2211.11633 [PDF]	EPJC	21 Nov 2022	2
Measurement of the Λ_c^+ to D^0 production cross-section ratio in peripheral PbPb collisions	PAPER-2021-046 arXiv:2210.06939 [PDF]	JHEP	13 Oct 2022	6
Study of coherent charmonium production in ultra-peripheral lead-lead collisions	PAPER-2022-012 arXiv:2206.08221 [PDF]	JHEP	16 Jun 2022	17
Measurement of the Z boson production cross-section in proton-lead collisions at $\sqrt{s_{NN}}$ = $8.16 TeV$	PAPER-2022-009 arXiv:2205.10213 [PDF]	JHEP	20 May 2022	6
Measurement of antiproton production from antihyperon decays in pHe collisions at $\sqrt{s_{NN}}$ = 110 GeV	PAPER-2022-006 arXiv:2205.09009 [PDF]	EPJC	18 May 2022	3
Measurement of the prompt D^0 nuclear modification factor in PPb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV	PAPER-2022-007 arXiv:2205.03936 [PDF]	PRL	08 May 2022	8
Evidence for modification of b quark hadronization in high-multiplicity pp collisions at \sqrt{s} = $13~\text{TeV}$	PAPER-2022-001 arXiv:2204.13042 [PDF]	PRL	27 Apr 2022	11
Nuclear modification factor of neutral pions in the forward and backward regions in pPb collisions	PAPER-2021-053 arXiv:2204.10608 [PDF]	PRL	22 Apr 2022	6
Measurement of the Nuclear Modification Factor and Prompt Charged Particle Production in $p-Pb$ and pp Collisions at $\sqrt{s_N N} = 5$ TeV	PAPER-2021-015 arXiv:2108.13115 [PDF]	Phys. Rev. Lett. 128 (2022) 142004	30 Aug 2021	16
J/ψ photoproduction in Pb-Pb peripheral collisions at $\sqrt{s_{NN}}$ = 5 TeV	PAPER-2020-043 arXiv:2108.02681 [PDF]	Phys. Rev. C105 (2022) L032201	05 Aug 2021	18
Study of coherent J/ψ production in lead-lead collisions at $\sqrt{s_{NN}}=5$ TeV	PAPER-2021-013 arXiv:2107.03223 [PDF]	JHEP 07 (2022) 117	07 Jul 2021	25
Measurement of prompt-production cross-section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ in $p\text{Pb}$ collisions at $\sqrt{s_{NN}}$ = 8.16 TeV	PAPER-2020-048 arXiv:2103.07349 [PDF]	Phys. Rev. C103 (2021) 064905	12 Mar 2021	6
Observation of multiplicity-dependent prompt $\chi_{c1}(3872)$ and $\psi(2S)$ production in pp collisions	PAPER-2020-023 arXiv:2009.06619 [PDF]	Phys. Rev. Lett. 126 (2021) 092001	14 Sep 2020	44
Observation of enhanced double parton scattering in proton-lead collisions at $\sqrt{s_{NN}}$ = 8.16 TeV	PAPER-2020-010 arXiv:2007.06945 [PDF]	Phys. Rev. Lett. 125 (2020) 212001	14 Jul 2020	14
Measurement of B^+ , B^0 and Λ_b^0 production in pPb collisions at $\sqrt{s_{NN}}=8.16~TeV$	PAPER-2018-048 arXiv:1902.05599 [PDF]	Phys. Rev. D99 052011 (2019)	14 Feb 2019	48
First Measurement of Charm Production in its Fixed-Target Configuration at the LHC	PAPER-2018-023 arXiv:1810.07907 [PDF]	Phys. Rev. Lett. 122 (2019) 132002	18 Oct 2018	86
Study of Y production in pPb collisions at $\sqrt{s_{NN}} = 8.16 \; \text{TeV}$	PAPER-2018-035 arXiv:1810.07655 [PDF]	JHEP 11 (2018) 194	17 Oct 2018	58
Prompt Λ_c^+ production in pPb collisions at $\sqrt{s_{NN}}=5.02~\text{TeV}$	PAPER-2018-021 arXiv:1809.01404 [PDF]	JHEP 02 (2019) 102	05 Sep 2018	56

→ https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/Summary_IFT.html

LHCb RESULTS AT IS2023

PARALLEL TALKS

- → Wed 21 June 2023, 15:20
- Jianqiao Wang: Open heavy-flavour and quarkonia production at LHCb
- → Wed 21 June 2023, 17:10
- Federica Fabiano: New constraints on nucleon structure from LHCb

POSTERS

- → Qiuchan Lu: New results from UPC collisions at LHCb
- → Camilla De Angelis : Probing nucleon structure with fixed-target collisions at LHCb

PROTON-LEAD

PROMPT Ec PRODUCTION IN pPb COLLISIONS AT 8.16 TeV

Arxiv:2305.06711, submitted to PRL

- → First measurement of this meson in pPb/Pbp heavy ion collisions (£ = 12.5 & 17.4 nb⁻¹)
 - Decay $\Xi_c^+ \to p \ k^- \pi^+$
- ightharpoonup Prompt Ξ_c^+ cross-section measured vs. p_T and y
- \rightarrow Ratio Ξ_c^+/Λ_c^+ constant vs. p_T

- → Well described by models incorporating initial state effects due to gluon shadowing in nuclei (no clear sign of strangeness enhancement)
- → Clear indications on the absolute scale of the theory

Talk of Jianqiao Wang, Wed 21st, 15:20

PROMPT E PRODUCTION IN pPb COLLISIONS AT 8.16 TeV

Arxiv:2305.06711, submitted to PRL

- → First measurement of this meson in pPb/Pbp heavy ion collisions (£ = 12.5 & 17.4 nb⁻¹)
 - Decay $\Xi_c^+ \to p \ k^- \pi^+$
- → Prompt Ξ_c^+ cross-section measured vs. p_T and y
- \rightarrow Ratio Ξ_c^+/Λ_c^+ constant vs. p_T

heory: Phys. Rev. Lett.

- → Well described by models incorporating initial state effects due to gluon shadowing in nuclei (no clear sign of strangeness enhancement)
- → Clear indications on the absolute scale of the theory

Talk of Jianqiao Wang, Wed 21st, 15:20

PROMPT D^+ , D_s^+ PRODUCTION IN pPb COLLISIONS AT 5.02 TEV

LHCb-PAPER-2023-006, in preparation

 \rightarrow First measurement of prompt D^+ , D_s^+ @forward rapidity & 0p_⊤ in heavy-ions collisions

→ Forward:

- Significant suppression consistent with nPDFs
- \triangleright Similar for D^+, D_s^+, D^0 ()HEP 10 (2017) 090)

→ Backward:

- $\triangleright D_s^+$ (and D^0) consistent with nPDFs
- $\triangleright D_s^+/D^+$ consistent with LHCb pp result and ALICE pp/pPb measurements at midrapidity→ little/no enhancement

19.06.2023

Talk of Jiangiao Wang, Wed 21st, 15:20

PROMPT D^+ , D_s^+ PRODUCTION IN pPb collisions at 5.02 TeV

LHCb-PAPER-2023-006, in preparation ard $\mathcal{L} \sim 1.5 \ nb^{-1}$ HCb preliminary

→ First measurement of prompt D^+ , D_s^+ @forward rapidity & Op_T in heavy-ions collisions

→ Forward :

- Significant suppression consistent with nPDFs
- \triangleright Similar for D^+, D_s^+, D^0 (JHEP 10 (2017) 090)

Talk of Jianqiao Wang, Wed 21st, 15:20

14

PROMPT DO PRODUCTION IN PPb COLLISIONS AT 8.16 TEV

Arxiv:2205.03936, accepted by PRL

→ Flagship measurement to disentangle charmonia and open charm effects (at LHCb performed @ several \sqrt{s} 's)

Forward:

- Suppression observed consistent with 5 TeV result
- In line with nPDF and CGC predictions

Backward:

- Data lower than nPDF at high pT
- Room for additional effects at negative rapidities

pp reference from interpolation between 5&13 TeV data (JHEP06(2017)147; JHEP05(2017)074)

nPDF calculations do not describe simultaneously π^0 and D^0 in the backward

Talk of Jianqiao Wang, Wed 21st, 15:20

15

PROMPT DO PRODUCTION IN PPb COLLISIONS AT 8.16 TEV

Arxiv:2205.03936, accepted by PRL

- \rightarrow Use experimental proxies for x and Q^2
- → Data consistent at 5 and 8 TeV
- → Trend seems smooth over wide x range
- ightarrow nPDF undershoot the data at large x_{exp} and Q_{exp}^2

16

pp reference from interpolation between 5&13 TeV data (JHEP06(2017)147: JHEP05(2017)074)

Talk of Jianqiao Wang, Wed 21st, 15:20

BOSE-EINSTEIN CORRELATIONS IN pPb@ 5.02TEV

- BEC: enhancement of prompt same-sign charged pions with small four-momentum difference squared

 LHCb-PAPER-2023-002.
 - → Insight into the geometrical size of the particle emitting source
 - Measurement performed in each bin of Velo track multiplicity
- → First measurement quantum interference effects in forward region in pPb

→ Correlation radii scale with cube root of the reconstructed charged-particle multiplicity, comparable with hydrodynamics models [Phys.Rev.C83(2011)044915, Phys.Lett.B720(2013)250]

in preparation

π^0 PRODUCTION IN pPb COLLISIONS AT 8.16 TEV

Arxiv:2205.10608, accepted by PRL

→ First measurement in forward rapidity at LHC

Backward:

- Enhancement above nPDFs
- Lower than charged hadrons => mass ordering effect ?

Forward:

- Measurement more precise than nPDFs predictions!
- Consistent with result in charged hadrons

→ Open the route to direct photon production measurements

 $p_{\rm T}$ [GeV]

$$R_{pPb} = \frac{o_{pPb}}{208 \times \sigma_{pp}}$$

pp reference from interpolation between 5&13 TeV data

Talk of Federica Fabiano, Wed 21st , 17:10

FIXED TARGET

CHARM PRODUCTION IN pNe COLLISIONS AT 68.5 GEV

arxiv:2211.11633,arxiv: 2211.11645 (submitted to EPJC)

 J/ψ cross section measured vs. p_T and y; in agreement with NLO pQCD models. Not sensitive to intrinsic charm contributions

 J/ψ to $\psi(2S)$ ratio agrees with other measurements in pA for small A (of the target)

MS = 1% Intrinsic charm + 10% Recombination Phys. Lett.B835(2022)137530

 $=48.2\pm0.3\,\mathrm{(stat.)}\pm4.5\,\mathrm{(syst.)}\,\mathrm{\mu b/nucleon}$

Poster of Camilla De Angelis

 \rightarrow First measurement of $\psi(2S)$ with SMOG.

J/ψ and D^0 production in PbNe collisions at 68.5 GeV

arxiv: 2211.11652 (submitted to EPJC)

→ First measurement in fixed-target nucleus-nucleus collisions at the LHC → Milestone for SMOG and LHCb!!!

- → Potential to observe Quark Gluon Plasma ©
- \rightarrow J/ψ further suppressed compared to D^0 in most central collisions
 - BUT: No anomalous J/ψ suppression is observed which could indicate QGP formation
- ightharpoonup Measurement of ratio $J/\psi/D^0$ vs. N_{coll} agrees in shape with pA results from NA50 (Phys. Lett. B 410 (1997) 337)

Poster of Camilla De Angelis

LEAD-LEAD

CHARMONIUM IN UPC PbPb collisions @5TEV

 $\mathcal{L}\sim$ 220 μb^{-1}

arXiv:2206.08221, accepted by HEP

Coherent charmonia produced by interaction between photon and pomeron

- Probe of the nuclear gluon distribution functions at a
- distribution functions at a scale $Q^2 \sim \frac{m^2}{4}$ (2S) measurement in at forward rapidities at the LHC Precise measurement of coherent J/ψ cross section $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}$

vs. p_T in UPC PbPb collisions

0.2

0.00

0.05

0.10

0.15

 $p_{\mathrm{T}}^* \left[\mathrm{GeV}/c \right]$

0.20

0.15

$$\sigma_{J/\psi}^{\rm coh} = 5.965 \pm 0.059 \pm 0.232 \pm 0.262 \,\mathrm{mb}\,,$$

$$\sigma_{\psi(2S)}^{\rm coh} = 0.923 \pm 0.086 \pm 0.028 \pm 0.040 \,\mathrm{mb}\,,$$

0.00

Reasonable description of data by models based on nPDF/CGC

0.05

 $\rightarrow I/\psi$ uncertainty much smaller than the spread of theoretical curves

0.10

Λ⁺_c and D⁰ IN PERIPHERAL PbPb collisions Arxiv:2210.06939, accepted by JHEP

- \rightarrow First measurement of the ratio Λ_c^+ / D^0 in PbPb in the forward
 - In agreement with Pythia8 with colour reconnection within 3_o of the data; tension with the Statistical Hadronization Model

LHCb PbPb@5.02TeV

Corr. syst. 5.16 %

Uncorr. svst.

2 < y < 4.5, $\langle N_{part} \rangle = 15.75 \pm 10.01$

 $p_{_{\rm T}}[{\rm GeV}/c]$

LHCb

0.8

Flat dependence vs. $\langle N_{part} \rangle$

Decreases at low-pt

- Compatible with flat dependence vs. rapidity
- → Needs more data to understand charm hadronisation mechanism
 - Will profit from larger dataset in the fall!

LHCB DETECTOR(S)

PHASE II IN A NUTSHELL

CERN-LHCC-2021-012; LHCB-TDR-023

THE POLARISED GAS TARGET: LHCSPIN

R&D has started!

- Compact dipole magnet static → transverse field.
- Superconductive coils + iron yoke configuration fits in the space constraints.
- B = 300 mT, Δ B/B \simeq 10 %, with polarity inversion. Achievable Luminosity (HL-LHC): \sim 8 × 10 cm s
- Route open by the fixed target system SMOG2 already in operation.

- LHC beams cannot be polarised => only way to open to this frontier physics
- Complementary to new EIC machine in US

SUMMARY AND OUTLOOK

- → LHCb successfully participated in heavy ion data-taking in 2015,2016 & 2018
 - Collected good statistics → great measurements!
 - Ready for the upcoming exciting results in Run3 (PbPb around the corner)!!
- → More new results soon with Run3 data
- → Many results also studied in view of the new detector in Run4/5
 - Upgraded II detector designed with improvements crucial for heavy ions
 - All centralities could be explored!
 - Yellow report on the way LHCB-TDR-12 17; CERN-LHCC-2018-026; LHCB-TDR-019

LHCB-FIGURE-2019-021

BACK-UP

CHARMONIUM IN (ULTRA) PERIPHERAL PbPb COLLISIONS

[Arxiv:2107.03223, 2108.02681]

- → Two nuclei collide with each-other with impact parameter larger or barely smaller than the sum of their radii
- → Photon induced interactions enhanced by strong EM field of nucleus.
 - Coherent: γ interacts with nucleus as a whole
 - Incoherent: γ interacts with the nucleons in the nucleus

UPC IN ALICE AND LHCb

→ Comparisons

PROMPT D^+ , D_s^+ PRODUCTION IN pPb collisions at 5.02 TeV

LHCb-PAPER-2023-006, in preparation

 \rightarrow First measurement of prompt D^+, D_s^+ mesons in forward rapidity in heavy ion collisions

Talk of Jianqiao Wang, Wed 21st, 15:20

CGC1 [75,76], the cross-section of the D mesons is obtained with the optical Glauber mechanism correlates the initial state of the nucleon with that of the proton

CGC2 [77], it is derived by convolving the charm-quark fragmentation function in a transverse momentum-dependent factorization framework

[75] Phys. Rev. D91 (2015) 114005, arXiv:1503.02789.

[76] Nucl. Part. Phys. Proc. 289-290 (2017) 309,

arXiv:1612.04585

[77]arXiv:1706.06728.

EPPS16: Eur. Phys. J. C 77 (2017)

CTEQ15: Phys. Rev. D 93 (2016) 085037

