

Recent Results for the PHENIX Experiment

Axel Drees, IS2023, June 2023, Copenhagen, Denmark

- Selected results from p+p
- Small systems p+Au, d+Au, ³He+Au
 - Disentangling centrality biases, initial state and final state effects
- Selected results from Au+Au
- Summary

PHENIX Data Sets

- PHENIX stopped data taking after 2016
- Ongoing analysis of large data sets taken in 2014, 2015, and 2016

Polarized pp

p+p,
$$\sqrt{s_{NN}} = 510 \text{ GeV}$$

Small systems

p+Al, p+Au, d+Au,
3
He+Au $\sqrt{s_{NN}} = 200 \text{ GeV}$

Large systems

$$\mathbf{Au + Au}$$

$$\sqrt{s_{NN}} = \mathbf{200} \, \mathbf{GeV}$$

√s [GeV]	p+p	p+AI	p+Au	d+Au	³He+Au	Curcu	Cu+Au	Au+Au	U+U
510	\otimes								
200		\otimes	\otimes	*		Ø	Ø	*	Ø
130									
62.4	Ø					Ø)		Ø	
39								(
27									
20						Ø			
14.5									
7.7									

Results in this talk published or shown for the first time in 2022/23

Direct Photon in Polarized p+p at 510 GeV

Double helicity asymmetry isolated direct photons

First measurement sensitive to sign of Δg $\Delta g < 0$ excluded at 2.8 σ level

Charmonium Production from p+p at 200 GeV

• J/ψ vs event multiplicity

- J/ψ enhanced in high N_{ch} events
- Observed at RHIC and LHC

Contribution from Multi Parton Interactions (MPI)?

Caveats:

- Rapidity range of N_{ch} measurement
- Are J/ψ decay products counted?

PHENIX: Zhaozhong Shi Parallel Session 7 We 16:30

Evidence for QGP Droplets in Small Systems

Anisotropy of charged particle production consistent with hydrodynamic expansion

Stony Brook University

Independent Study of Anisotropy

- Different systematics, different sensitivity to non flow effects
- Consistent v₂

Independent Study of Anisotropy

- Using two particle correlations over large rapidity range
 - Different systematics, different sensitivity to non flow effects
 - Consistent v₂
 - Consistent v₃

Confirm geometrical ordering of v₂ and v₃

Axel Drees

J/ψ and $\psi(2S)$ in p+Au

PHENIX: PRC 105 (2022) 064912

- Similar modification of J/ψ and $\psi(2S)$ in p-direction
- Stronger ψ (2*S*) suppression in Au-direction
 - nPDF only can not describe the data
 - Qualitatively agree with the transport model with final-state effects

Qualitatively consistent with

QGP formation

Nuclear Modification of π^0 spectra in Small Systems

- Cronin peak in intermediate range $2 < p_T < 6 \text{ GeV/c}$
 - Peak increase with "target" A in p+A
 - Broadening/decrease/shift of peak with increasing "projectile" p+Au \rightarrow d+Au \rightarrow ³He+Au
- High $p_T > 6 \text{ GeV/c}$
 - R_{xA} consistent with unity p+Al ~ p+Au ~ d+Au ~ ³He+A

Modification of "Cronin" peak No/little suppression at high p_t

Comparison to Nuclear PDFs

Inclusive Cross Section

Consistent with nuclear PDFs within large uncertainties, but trends qualitatively different from data

Axel Drees

Centrality Selected Small System Collisions

- π^0 R_{xA} from p+Au, d+Au, ³He+Au
 - Central: 20% suppression consistent with energy loss
 - Peripheral: 15 % enhancement unexplained, likely due to selection bias

Similar observations at RHIC & LHC

Inconclusive R_{xA} for high p_T in small systems Bias or final state effects?

Mapping Event Activity to Centrality With Glauber Model

PHENIX: PRC90 (2014) 034902

PHENIX Beam-Beam Counters (BBC)

Procedure for small systems

- Measure event activity (N_{ch}) in BBC on Au going side
- Fit event activity to superposition of negative binomial distributions for each nucleon-nucleon collision
- Select events in percentiles of event activity (0-5%, 5-10%, etc.) for data & model
- Assign N_{coll} from model to data

Axel Drees

Bias in Event Activity from Hard Scattering

- Reduced forward event activity in nucleon-nucleon collision with hard scattering
 - Averaged out in Au+Au collisions
 - High p_T events shifted to lower EA and lower N_{coll} in small systems
 - Increases R_{AB} in peripheral events, probably p_T dependent

Bias in event selection for hard probes in small systems

Axel Drees

Use Direct Photons to Minimize Selection Bias

- No nuclear modification of direct γ
 - Au+Au direct γ scale with N_{coll}

$$R_{AB}^{\gamma^{dir}}(\boldsymbol{p}_{T}) = \frac{Y_{AB}^{\gamma^{dir}}(\boldsymbol{p}_{T})}{N_{coll} Y_{pp}^{\gamma^{dir}}(\boldsymbol{p}_{T})} \sim 1$$

Use direct γ to measure factor " N_{coll} " to scale hard scattering processes

$$N_{coll}^{EXP} = \frac{Y_{AB}^{\gamma^{dir}}(p_T)}{Y_{pp}^{\gamma^{dir}}(p_T)}$$

Redefine Nuclear Modification Factor

$$R_{AB,EXP}^{\pi^{0}}(p_{T}) = \frac{Y_{AB}^{\pi^{0}}(p_{T})}{Y_{pp}^{\pi^{0}}(p_{T})} \times \frac{Y_{pp}^{\gamma^{dir}}(p_{T})}{Y_{AB}^{\gamma^{dir}}(p_{T})} = \frac{(\gamma^{dir}/\pi^{0})^{pp}}{(\gamma^{dir}/\pi^{0})^{AB}}$$

- **Insensitive to event selection bias**
- No Glauber model dependence
- **Largely insensitive to CNM effects**
- Partially accounts for p_T dependent bias
- Many systematic uncertainties cancel

ENIX

PHENIX: PRL109 (2012) 152302

Search for final state effects simultaneously measure direct γ and π^0

γ^{dir} to π^0 Ratio in d+Au and p+p Collisons

- $\gamma^{\rm dir}/\pi^0$ for inclusive samples (0-100%)
 - Equal for p+p to d+Au
 - p+p systematic dominated by 2003 γ^{dir} data

- $\gamma^{\rm dir}/\pi^0$ for different centrality
 - Peripheral events consistent with min. bias
 - 0-5% visibly larger

No or similar modification of $\gamma^{\text{dir}}/\pi^0$ for most d+Au selections Different modification for 0-5% central d+Au

Evaluating Bias in N_{coll}^{GL} from Glauber Model

• Determine scaling factor N_{coll}^{EXP} from γ^{dir}

PH ENIX

- Independent of p_T for 7.5 to 18 GeV/c
- N_{coll}^{EXP} and N_{coll}^{GL} consistent within scale uncertainties

$$N_{coll}^{EXP} = \frac{Y_{dAu}^{\gamma^{dir}}(p_T)}{Y_{pp}^{\gamma^{dir}}(p_T)}$$

- Visible trend in N_{coll}^{EXP} and N_{coll}^{GL} 0 2 4 6 8 10 12 with centrality within common scale uncertainties
 - Good agreement in central collisions within 5%
 - 15% deviation in peripheral collisions

Bias in event selection:

Event activity reduced in presence of hard scattering

Nuclear Modification Factor for π^0 in inclusive d+Au

$$R_{dAu,EXP}^{\pi^{0}}(p_{T}) = \frac{Y_{dAu}^{\pi^{0}}(p_{T})}{Y_{pp}^{\pi^{0}}(p_{T})} \times \frac{Y_{pp}^{\gamma^{dir}}(p_{T})}{Y_{dAu}^{\gamma^{dir}}(p_{T})} = \frac{(\gamma^{dir}/\pi^{0})^{pp}}{(\gamma^{dir}/\pi^{0})^{dAu}}$$

- Redefined $R_{dAu,EXP}^{\pi^0}(p_T)$
 - No significant p_T dependence
 - **Average value:** $R_{dAu\,EXP}^{\pi^0}(p_T) = 0.92 \pm 0.02 \pm 0.15$
 - Consistent with unity within 16% scale uncertainty
 - Consistent with 5% enhancement from CNM effects*

Small or no final state modification in inclusive d+Au

> * From Arleo et al: CNM effects largely cancel in γ^{dir}/π^0 ratio in this p_T range

Centrality Dependence of $R_{dAu,EXP}^{\pi^0}(p_T)$

$$R_{dAu,EXP}^{\pi^{0}}(p_{T}) = \frac{Y_{dAu}^{\pi^{0}}(p_{T})}{Y_{pp}^{\pi^{0}}(p_{T})} \times \frac{Y_{pp}^{\gamma^{dir}}(p_{T})}{Y_{dAu}^{\gamma^{dir}}(p_{T})} = \frac{(\gamma^{dir}/\pi^{0})^{pp}}{(\gamma^{dir}/\pi^{0})^{dAu}}$$

Peripheral d+Au collisions

$$R_{dAu,EXP}^{\pi^0}(p_T) = 0.94 \pm 0.05 \pm 0.16$$

- Consistent with inclusive d+Au sample
- Central d+Au collisions

18

$$R_{dAu,EXP}^{\pi^0}(p_T) = 0.75 \pm 0.03 \pm 0.13$$

- Clear suppression of π^0 yield
- About 20% relative to inclusive sample

Suppression of π^0 in central 0-5% d+Au

Centrality Dependence of $R_{dAu,EXP}^{\pi^0}$

- $R_{dAu,EXP}^{\pi^0}$ verses N_{coll}^{EXP} or $dN_{ch}/d\eta$
 - Assess significance relative to min. bias sys. uncertainty and CNM effects cancel
 - N_{coll}^{EXP} < 14 consistent with inclusive d+Au

$$\frac{R_{dAu,EXP}^{\pi^0}(60 - 88\%)}{R_{dAu,EXP}^{\pi^0}(0 - 100\%)} = 1.017 \pm 0.056$$
The resign for $N^{EXP} > 14$, i.e., top 10% centrality

• Suppression for $N_{coll}^{EXP} > 14$, i.e. top 10% centrality

$$\frac{R_{dAu,EXP}^{\pi^0}(0-5\%)}{R_{dAu,EXP}^{\pi^0}(0-100\%)} = 0.806 \pm 0.042$$

• Increasing suppression with N_{coll}^{EXP} or $dN_{ch}/d\eta$

20% high p_T π^0 suppression with 4.5 σ significance in final state of 0-5% central d+Au collisions at 200 GeV

Comparison to ALICE limit from Jets

20

• PHENIX π^0 suppression in 0-5% d+Au

- Assume π^0 is leading particle
- Use momentum loss δp_T estimate from *PHENIX:PRC93(2016)24911*
- 20% suppression relative to 0-100%
- momentum shift $\delta p_T \sim 0.2 \text{ GeV/c}$

• ALICE limit 0-20% p+Pb at 5.02 TeV:

- for charged jet $p_T > 15 \text{ GeV/c}$
- ΔE move outside of R=0.4 cone in recoil jet < 0.4 GeV at 90% CL

Axel Drees

Non-Prompt Direct Photons from Au+Au

High statistics Au+Au $\sqrt{s_{NN}} = 200 \text{ GeV}$ data taken 2014

Increasing T_{eff} with p_T

- **Low p**_T: **Hadron Gas** + **flow**
- Medium p_T : additional contributions from source with $T > T_C$

Possibly Contribution from QGP or pre-equilibrium phase

* Stony Brook University

Summary

- Polarized p+p at 510 GeV:
 - Isolated direct photons consistent with zero or small positive Δg
- Small systems p+Al, p+Au, d+Au, ³He+Au at 200 GeV:
 - v₂/v₃ consistent with geometrical ordering expected from hydro expansion
 - ψ ' suppressed more than J/ ψ in Au direction, consistent with final state effects
 - High $p_T \gamma^{dir}$ resolve bias in event selection bias inherent to Glauber model approach
 - First evidence for significant 20% final state suppression of high p_T π^0 (7.5 to 18 GeV/c) in central 0-5% d+Au collisions

Small system data consistent with QGP droplets in central collisions

- Au+Au collsions at 200 GeV:
 - Non prompt γ^{dir} sensitive to early emission prior to Hadron gas formation

Other PHENIX Presentations at IS2023

 Measurements of J/ψ production vs event multiplicity in the forward rapidity in p+p and p+Au collisions in the PHENIX experiment

PHENIX: Zhaozhong Shi Parallel Session 7 We 16:30

Disentangling centrality bias and final state effects in small system collisions

PHENIX: Niveditha Ramasubramanian Poster 137 at Reception Mo 19:00

Lévy HBT analysis of Bose-Einstein correlations

PHENIX: Sándor Lökös Poster 136 at Reception Mo 19:00

• π^0 and γ^{dir} at high p_T from high statistics 2014 data set

PHENIX: Nour Jalal Abdulameer Poster 156 at Reception Mo 19:00

Backup

PHENIX Experiment at RHIC

$\gamma^{\rm dir}$ and π^0 Yields from d+Au and p+p at 200 GeV

PHENIX

- High $p_T \gamma^{dir}$ (7.5 < pt < 18 GeV/c)
 - First centrality selected data from d+Au
 - min. bias d+Au data consistent with 2003 data: PHENIX:PRC87(2013)54907
 - p+p reference from: PHENIX:PRD86(2012)72008

- High $p_T \pi^0$ (7.5 < pt < 18 GeV/c)
 - d+Au data from 2016 consistent with 2008 data: PHENIX:PRC(2022)64902
 - p+p reference data from: PHENIX:PRC(2022)64902

* Stony Brook University

Energy Loss in Small Systems?

Nuclear modification factor:
$$R_{AB}(p_T) = \frac{Y_{AB}(p_T)}{\langle N_{coll} \rangle Y_{pp}(p_T)}$$

• Expectation/Predictions

- **■** Small system size → few fm path length
- Limited energy loss (<10% in min bias p+Pb at LHC)
- Competing CNM effects of possibly similar size

Small Signature → Challenging Measurement

High-x Proton Size Fluctuation

(b) N+N collision with large- x_p projectile nucleon

McGlinchy, Nagle, Perepelitsa PRC 94 (2022) 024915

Expected ordering with system size not observed

Hard scattering of parton with high x in pAu

- nucleons has smaller than average size
- **Ncoll and Npart smaller**
- **Smaller number of produced particles**

Characteristic Projectile Dependence

- **Projectile nucleons interact independently**
- **Dilution of effect with increasing Nproj**
- Ordering of modification pAu $> dAu > {}^{3}HeAu$

PHENIX: PRC 105 (2022) 064902

