In-medium parton showers with overlapping emissions

Peter Arnold

University of Virginia

Reporting (eventually) on recent work with

letter: 2212.08086 details: 2302.10215

Shahin Iqbal Omar Elgedawy

Medium-induced showering

Prob. of brem $\sim \alpha$ per collision with medium (up to logs)

Medium-induced showering

Formation time means quantum <u>duration</u> of splitting process.

Formation time grows with energy *E*.

Medium-induced showering

Formation time means quantum <u>duration</u> of splitting process.

Formation time grows with energy *E*.

LPM Effect:

What happens when formation time \gg mean free time between collisions w/ medium?

Prob. of brem $\sim \alpha$ per formation time

QED (1950s): LPM [Landau-Pomeranchuk & Migdal]

QCD (1990s): BDMPS-Z + many later variations

calculation of splitting rates

 $\frac{d\Gamma}{dx}^{\text{split}}$

Can we then describe in-medium shower development by

(LPM splitting rates)

Or can splittings overlap?

Or can splittings overlap?

All depends on how big $\alpha(\mu)$ is!

For small α , there is a hierarchy of scales that (typically) separates the splittings:

Summary so far

 $\alpha_s(\mu)$ small

a "standard" picture of a shower

 $\alpha_s(\mu)$ big

HELP!

Turn to AdS/CFT for qualitative insight

How do we tell if

is a good or bad picture for reasonable values of $\alpha_s(\mu)$?

Two approaches

- (1) EXTERNAL VALIDATION: Confront w/ experiment. But.... many confounding factors.
- (2) INTERNAL CONSISTENCY: Test with theory!

Question:

Are the first corrections

small for reasonable values of $\alpha_s(\mu)$?

Perks for theorists:

- May avoid confounding factors by testing in simplified situations.
- Can test on simple shower characteristics not accessible to experiment.

A theorist thought experiment

Simplifying assumptions

• Treat elastic scattering w/ medium in the \hat{q} approximation:

$$\langle (\text{change in } p_{\perp})^2 \rangle = \hat{q} \cdot (\text{distance traveled})$$

A static, homogeneous, "infinite"-size QGP

I can now reveal that scale for
$$lpha_{
m s}(\mu)$$
 is $\mu \sim (\hat q E)^{1/4}$ and formation times are $t_{
m form} \sim \sqrt{E/\hat q}$

- Start with a parton that is (approx.) on-shell.
- Study gluon-initiated showers in large-N_c limit (w/ N_f fixed)

Only g→gg splittings consider (so far!)

A theorist thought experiment

Something theorists could "observe":

(statistically averaged) distribution of energy deposited by shower as a function of distance z

 $\ell_{
m stop} \equiv \langle z
angle$ (1st moment of energy deposition distribution) $\ell_{
m stop} \sim rac{t_{
m form}}{lpha} \sim rac{1}{lpha} \sqrt{rac{E}{\hat{m q}}}$

$$\ell_{
m stop} \sim rac{t_{
m form}}{lpha} \sim rac{1}{lpha} \sqrt{rac{E}{\hat{m q}}}$$

Note: $\ell_{ ext{stop}}$ depends on \hat{q}

How big are the overlap corrections to $\varepsilon(z)$?

Answer:

BIG!

... which has been know since

lancu (2014) Blaizot and Mehtar-Tani (2014) Wu (2014)

[building on radiative corrections to \hat{q} found by Liou, Mueller, Wu (2013)]

(1) BIG because there is a double-log enhancement coming from SOFT radiation:

(2) But these BIG soft-radiation effects can be absorbed into an effective value of \hat{q} :

$$\hat{q} \longrightarrow \hat{q}_{ ext{eff}}(E) = \hat{q} \left[1 + \# lpha_{ ext{s}} \ln^2(rac{E}{T})
ight]$$

How big are overlap effects that cannot be absorbed in \hat{q} ?

(1) Need to calculate overlap of two <u>hard</u> splittings:

Extremely difficult calculation.

After lots of QFT and many (!!) years ...

Completed (for gluons) in 2022 with S. Iqbal and

Tyler Gorda

How big are overlap effects that cannot be absorbed in \hat{q} ?

(1) Need to calculate overlap of two hard splittings:

Extremely difficult calculation.

E ~ bard

After lots of QFT and many (!!) years ...

Completed (for gluons) in 2022 with S. Iqbal and

Tyler Gorda

Technical note

The drawing above is short-hand for what we call

$$\Delta \frac{d\Gamma}{dx\,dy} \equiv ext{the overlap } \frac{\text{correction}}{\text{to two independent splittings}}$$

$$= \left[\left\langle \left| \int_0^\infty \!\! d(\Delta t) \, \cdots \, \left| \frac{1}{\Delta t} \right\rangle_{\substack{\text{medium} \\ \text{avg}}} \right| \right. - \left[\begin{array}{c} \text{pretending the two splittings} \\ \text{are independent dice roles} \\ \frac{d\Gamma}{dx} \, \text{and} \, \frac{d\Gamma}{dy} \end{array} \right]$$

which cancels except for contributions from splittings separated by $\Delta t \lesssim t_{\mathrm{form}}$

How big are overlap effects that cannot be absorbed in \hat{q} ?

(2) Choose a theorist observable that is insensitive to \hat{q} : consider the shape S(Z) of the energy deposition distribution:

How big are overlap effects that cannot be absorbed in \hat{q} ?

Example

^{*} Important, interesting, and resolvable caveats that I may not have time to explain.

How to account for overlaps in showers

Think of

as "standard" shower development with independent splittings but two types of localized, independent vertices:

Then treat these "splitting" probabilities as purely classical.

RESULTS

To start: the width of the shape S(Z) of energy deposition

Large-N_f QED [2018 w/ S. Iqbal]:

charge deposition

S. Iqbal]: "LO" means "ignoring over
$$\sigma_S=rac{\sigma}{\ell_{
m stop}}=\left(rac{\sigma}{\ell_{
m stop}}
ight)_{
m LO}\left[1-0.87\,N_{
m f}lpha(\mu)
ight]$$

Large-N_c QCD (gluons only) [2022 w/ S. Iqbal and O. Elgedawy]:

energy deposition
$$\sigma_S = rac{\sigma}{\ell_{
m stop}} = \left(rac{\sigma}{\ell_{
m stop}}
ight)_{
m LO} \left[1 + rac{???}{???} N_{
m c} lpha_{
m s}(\mu)
ight]$$
 DRUM ROLL PLEASE

RESULTS

To start: the width of the shape S(Z) of energy deposition

Large-N_f QED [2018 w/ S. Iqbal]:

charge deposition

S. Iqbal]: "LO" means "ignoring over
$$\sigma_S=rac{\sigma}{\ell_{
m stop}}=\left(rac{\sigma}{\ell_{
m stop}}
ight)_{
m LO}\left[1-0.87\,N_{
m f}lpha(\mu)
ight]$$

Large-N_c QCD (gluons only) [2022 w/ S. Iqbal and O. Elgedawy]:

energy deposition
$$\sigma_S = rac{\sigma}{\ell_{
m stop}} = \left(rac{\sigma}{\ell_{
m stop}}
ight)_{
m LO} \left[1 - 0.02\,N_{
m c}lpha_{
m s}(\mu)
ight]$$

RESULTS

To start: the width of the shape S(Z) of energy deposition

Large-N_f QED [2018 w/ S. Iqbal]:

charge deposition

S. Iqualj:
$$\sigma_S = \frac{\sigma}{\ell_{\rm stop}} = \left(\frac{\sigma}{\ell_{\rm stop}}\right)_{\rm LO} \left[1 - 0.87\,N_{\rm f}\alpha(\mu)\right]$$

Large-N_c QCD (gluons only) [2022 w/ S. Iqbal and O. Elgedawy]:

$$\sigma_{\!S} = rac{\sigma}{\ell_{
m stop}} = \left(rac{\sigma}{\ell_{
m stop}}
ight)_{
m LO} \left[1 - 0.02\,N_{
m c}lpha_{
m s}(\mu)
ight]$$

Conclusion for this test

Overlap corrections that cannot be absorbed into \hat{q} are negligible.

"LO" means "ignoring overlaps"

The QED and gluon results are very different: Discuss!

Large-N
$$_{\rm f}$$
 QED $\sigma_{\!S} = rac{\sigma}{\ell_{
m stop}} = \left(rac{\sigma}{\ell_{
m stop}}
ight)_{
m LO} \left[1 - 0.87\,N_{
m f}lpha(\mu)
ight]$ Large-N $_{
m c}$ gluons $\sigma_{\!S} = rac{\sigma}{\ell_{
m stop}} = \left(rac{\sigma}{\ell_{
m stop}}
ight)_{
m LO} \left[1 - 0.02\,N_{
m c}lpha_{
m s}(\mu)
ight]$

A concern: QCD with quarks has some overlap diagrams that look similar to QED

Will adding quarks to the analysis qualitatively change the conclusion for QCD?

Answer: Work in progress.

Shrouded from view in this presentation ...

I half-lied about something

Remember

and why we did that:

$$\hat{q} \longrightarrow \hat{q}_{ ext{eff}}(E) = \hat{q} \left[1 + \# lpha_{ ext{s}} \ln^2 (rac{E}{T})
ight]$$

But then $\hat{q}_{\mathrm{eff}}(E)$ is different $\underline{\textit{here}}$ and $\underline{\textit{there}}$.

Those difference don't quite cancel in $\sigma_S = \sigma/\ell_{\text{stop}}$ and S(Z). They cancel at leading log but leave behind BIG single-log corrections to σ_S and S(Z):

overlap corrections $\sim lpha_{
m s}(\mu) \ln(rac{E}{T})$

Factorization

Remember that soft radiation can be absorbed into \hat{q} .

When factorizing away some IR or UV physics in QFT, we must introduce a factorization scale to do NLO calculations.

Examples

UV divergences absorbed into couplings: renormalization scale μ

Collinear divergences absorbed into PDFs: factorization scale $M_{\rm fac}$

Such factorization scales appear explicitly inside logarithms in NLO results.

- Set them to the appropriate physics scale for the process.
- Check sensitivity to the precise choice of scale.

Our problem

To factorize *all* the soft radiation effects into $\hat{q}_{ ext{eff}}$, we introduce an energy factorization scale

$$\Lambda_{
m fac}=\#\left({
m min\ energy\ of\ daughters\ of}
ight.$$
 where # = any reasonable O(1) number.

The overlap result shown earlier was the result for # = 1.

Now showing dependence on the normalization # of the factorization scale:

$$\sigma_{\!S} = rac{\sigma}{\ell_{
m stop}} = \left(rac{\sigma}{\ell_{
m stop}}
ight)_{
m LO} \left[1 - (0.02 + 0.001 \ln \#) N_{
m c} lpha_{
m s}(\mu)
ight]$$

Extremely weak dependence on factorization scale.

Return to Conclusions

Large-N
$$_{\rm f}$$
 QED $\sigma_{\!S} = rac{\sigma}{\ell_{
m stop}} = \left(rac{\sigma}{\ell_{
m stop}}
ight)_{
m LO} \left[1-0.87\,N_{
m f}lpha(\mu)
ight]$ Large-N $_{
m c}$ gluons $\sigma_{\!S} = rac{\sigma}{\ell_{
m stop}} = \left(rac{\sigma}{\ell_{
m stop}}
ight)_{
m LO} \left[1-0.02\,N_{
m c}lpha_{
m s}(\mu)
ight]$

A concern: QCD with quarks has some overlap diagrams that look similar to QED

Will adding quarks to the analysis qualitatively change the conclusion for QCD?

Answer: Work in progress.