Thermal Conductivity of High Pressure Cross Ply Carbon Fiber

Ryan Story, Sushrut Karmarkar, Souvik Das, Andy Jung

June 15, 2021
My research is focused on the materials science of these “Dees” Jim Alexander spoke about at the intro lecture.
The Apparatus & Procedure

Spring clamp to ensure equal pressure at thermal interfaces
- Resistive heating element
- Heating flux-meter made of copper with 6 thermistors
- Test material
- Cooling flux-meter
- Peltier element with water cooling

How do we mitigate convective and radiative losses from the sample?

- Ensure heat flow entering sample is equal to heat flow exiting sample. Requires tweaking heater voltage and Peltier voltage with realtime estimation of the fluxes.
- Residual difference of ~ 5% is one of the dominant uncertainties.

Six equidistant thermistors placed at the center of copper rod and sealed with adequate thermal grease to create a heat flux-meter

Contact surfaces of the flux-meter milled flat with very high tolerance

How do we eliminate contact conductance from our measurements?

- By carrying out four independent measurements with varying thicknesses of TIM
- By using the same amount of MX4 between sample and fluxmeters across all measurements
- By using the same force across all measurements
Motivation for High-pressure cross-ply K13D2U/EX1515 Measurement

Trying to improve through-plane thermal conductivity using high pressure. Unidirectional or Cross-ply?

<table>
<thead>
<tr>
<th>K13D2U+EX1515 carbon fiber composite</th>
<th>(Unidirectional)</th>
<th>(Cross-ply)</th>
<th>0.65</th>
<th>410 [7]</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-axis</td>
<td>(376 ± 31)</td>
<td>(1.7 ± 0.3) · 10^{-5}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y-axis</td>
<td>(7.5 ± 4.4)</td>
<td>(3.9 ± 3.5) · 10^{-4}</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>z-axis</td>
<td>(1.44 ± 0.24)</td>
<td>(1.4 ± 1.4) · 10^{-4}</td>
<td>0.44</td>
<td>0.53 [7]</td>
</tr>
<tr>
<td>z-axis (cured at 20 bar)</td>
<td>(2.79 ± 0.46)</td>
<td>(2.0 ± 9.0) · 10^{-5}</td>
<td>0.43</td>
<td>1.2 [7]</td>
</tr>
</tbody>
</table>

- K13D2U/EX1515 cured at 20 bar, unidirectional, $k = 2.8 \pm 0.5$ W/mK
- K13D2U/EX1515 cured at 20 bar, cross-ply, $k =$?
1. Lay up is done as a 2-inch x 6-inch slab of material
2. Debulking done for every 4 plies of lay up
3. The samples are cured in a press with environmental chamber at the recommended cure temperature at 20 bar pressure
4. Post cured as per manufacturer recommendations
5. Water jet cut into 5 discs of 1 inch diameter and same thickness
6. The 5 pucks are mounted on a flat surface using parallels and CNC machined to different thicknesses
7. The samples are cleaned using IPA and dried at 80°C for 4 hours and then sent to PSDL for measurement
Fabrication for High-pressure cross-ply K13D2U/EX1515

Micrograph for EX1515/K13D2U high pressure 20 bar cure cross ply [0/90]_ns

Sushrut Karmarkar^6
TC8_CF1

Sample ID = “TC8_CF1.” Measurements:

- Sample Thickness = 2000 ± 10 μm
- Temperature difference across the sample, $\Delta T = 13.284 \pm 0.001$ K (Uncertainty dominated by fit uncertainties)
- Heat flux through the sample, $I = 8.5 \pm 0.4$ W (Uncertainty dominated by heat balancing accuracy)

We infer the total thermal resistance: $R_{TC8_CF1} = \frac{\Delta T}{I} = 1.57 \pm 0.08$ K/W
Sample ID = “TC8_CF2.” Measurements:

- Sample Thickness = 2450 ± 10 μm
- Temperature difference across the sample, $\Delta T = 16.2122 \pm 0.001$ K (Uncertainty dominated by fit uncertainties)
- Heat flux through the sample, $I = 8.6 \pm 0.5$ W (Uncertainty dominated by heat balancing accuracy)

We infer the total thermal resistance: $R_{TC8_CF2} = \Delta T/I = 1.9 \pm 0.1$ K/W
Sample ID = “TC8_CF3.” Measurements:

- Sample Thickness = 2750 ± 10 μm
- Temperature difference across the sample, $\Delta T = 16.011 \pm 0.001$ K (Uncertainty dominated by fit uncertainties)
- Heat flux through the sample, $I = 8.4 \pm 0.3$ W (Uncertainty dominated by heat balancing accuracy)

We infer the total thermal resistance: $R_{TC8_CF3} = \Delta T/I = 1.92 \pm 0.08$ K/W
Sample ID = “TC8_CF4.” Measurements:
- Sample Thickness = 3020 ± 10 μm
- Temperature difference across the sample, $\Delta T = 20.354 \pm 0.001$ K (Uncertainty dominated by fit uncertainties)
- Heat flux through the sample, $I = 8.99 \pm 0.09$ W (Uncertainty dominated by heat balancing accuracy)

We infer the total thermal resistance: $R_{TC8_CF4} = \Delta T/I = 2.26 \pm 0.02$ K/W
Sample ID = “TC8_CF5.” Measurements:

- Sample Thickness = 3300 ± 40 μm
- Temperature difference across the sample, $\Delta T = 21.630 \pm 0.002$ K (Uncertainty dominated by fit uncertainties)
- Heat flux through the sample, $I = 9.42 \pm 0.07$ W (Uncertainty dominated by heat balancing accuracy)

We infer the total thermal resistance: $R_{TC8_CF5} = \Delta T/I = 2.30 \pm 0.02$ K/W
Result: High-pressure cross-ply K13D2U/EX1515

Cross-ply layup does increase through-plane thermal conductivity compared to unidirectional layups in high-pressure cures of carbon fiber pre-preg.

$k_{\text{Undirectional}} = 2.8 \pm 0.5 \text{ W/mK}$

$k_{\text{Cross-Ply}} = 3.9 \pm 0.5 \text{ W/mK}$