
RooFit	Development	-	Pythonization	ideas
The	deliverables	of	pythonization	project	group	in	the	following	areas	outlined	below.	Please	let
us	know	if	you	have	any	further	ideas	or	suggestions!

1.	Pythonizations	of	RooFit	functions	that	take	command	arguments

Pythonizations	of	RooFit	functions	that	take	command	arguments,	as	tracked	in	this	issue
(https://github.com/root-project/root/issues/7217).
Primary	goal	is	to	pythonize	all	functions	that	accept	RooCmdArgs,	such	that	they	take	keyword
arguments	instead.
We	can	find	the	these	function	patterns	for	example	with	git	grep	"RooCmdArg::none()".

The	code	will	become	more	beautiful	on	the	python	side,	for	example

pdf.fitTo(data,	ROOT.RooFit.Range("sideband"))

becomes

pdf.fitTo(data,	range="sideband")

We	decided	to	capitalize	the	keyword	arguemnts	to	be	consistent	with	the	doxygen
documentation.

Special	case:	nested	command	arguments

The	idea	of	replacing	the	RooCmdArg	functions	with	keyword	arguments	runs	into	problems
when	the	functions	that	create	a	RooCmdArg	accept	a	RooCmdArg	itself.	Here	is	an	example
from	the	rf302_utilfuncs.py	tutorial	(https://github.com/root-
project/root/blob/master/tutorials/roofit/rf302_utilfuncs.py):

model.createHistogram("hist",	x,
																						ROOT.RooFit.Binning(50),
																						ROOT.RooFit.YVar(y,	ROOT.RooFit.Binning(50)))

The	naive	solution	does	not	work,	becuase	we	can't	use	keyword	arguments	in	tuples:

model.createHistogram("hist",	x,	Binning=50,	YVar=(y,	Binning=50))

One	possible	pythonic	interface	would	be	to	use	dictionaries	(...but	it's	problematic	in	python	2
where	dictionaries	are	not	ordered):

model.createHistogram("hist",	x,	Binning=50,	YVar=dict(var=y,	Binning=50))

2.	Simple	pythonizations	to	make	RooFit	in	pyROOT	less	verbose	and
more	pythonic

Simple	pythonizations	to	make	RooFit	in	pyROOT	less	verbose	and	more	pythonic	that	we	can
identify	by	looking	at	the	RooFit	tutorials	(https://github.com/root-
project/root/tree/master/tutorials/roofit)	and	find	reoccuring	non-pythonic	patterns.

One	pattern	to	pythonize	are	for	example	colors:

https://github.com/root-project/root/issues/7217
https://github.com/root-project/root/blob/master/tutorials/roofit/rf302_utilfuncs.py
https://github.com/root-project/root/tree/master/tutorials/roofit

model.plotOn(xframe,	ROOT.RooFit.LineColor(ROOT.kMagenta))

We	can	use	the	well	known	color	conventions	from	matplotlib
(https://matplotlib.org/stable/gallery/color/named_colors.html)	to	simplify	this:

model.plotOn(xframe,	ROOT.RooFit.LineColor("m"))

However,	this	"pythonization"	can	also	be	done	in	the	C++	code,	so	also	C++	users	can	profit
from	this	familiar	notation.

Another	good	indicator	for	patters	that	can	be	pythonized	is	the	usage	of	enums:

ROOT.RooDecay("decay_gm",	"decay",	dt,	tau,	gm,	ROOT.RooDecay.DoubleSided)

Keyword	arguments	with	string	values	would	be	more	pythonic	here:

ROOT.RooDecay("decay_gm",	"decay",	dt,	tau,	gm,	DecayType="DoubleSided")

In	general,	the	usage	of	C++	enums	seems	to	be	a	good	indicator	that	a	pythonization	is
due.	We	hope	to	find	more	such	indicators	throughout	the	project.

3.	Correct	handling	of	object	ownership	in	Python

This	is	one	of	the	largest	issues	in	pyROOT.	See	RooFit/Stats	mattermost	for	ongoing
discussion.

4.	More	complicated	Pythonizations	for	use	cases	that	are	challenging
to	implement	without	expert	C++	knowledge

See	for	example	this	forum	post	(https://root-forum.cern.ch/t/combining-roodatasets-in-
pyroot/43615).	Here,	the	problem	is	that	one	has	to	create	a	C++	``std::unordered_mapin
python	to	pass	to	theImport`	command	argument	function:

dsmap	=	ROOT.std.map('string,	RooDataSet*')()

#	this	is	necessary	to	keep	the	RooDataSets	alive,
#	because	the	dsmap	only	contains	pointers.
dsmap.keepalive	=	list()

#	from	python	dictionary	to	std::unordered_map
for	c,	d	in	dsdict.items():
				dsmap.keepalive.append(d)
				dsmap[c]	=	d

ds	=	ROOT.RooDataSet("data","data",	ROOT.RooArgSet(x),	Index=cat,	Import=dsmap)

It	should	be	possible	to	pass	python	dictionaries	directly	to	Import:

ds	=	ROOT.RooDataSet("data","data",	ROOT.RooArgSet(x),	Index=cat,	
Import=dsdict)

The	same	pattern	can	also	occur	in	the	creation	of	a	RooDataHist,	as	demonstrated	in	this
tutorial	(https://github.com/root-
project/root/blob/master/tutorials/roofit/rf401_importttreethx.py#L82):

https://matplotlib.org/stable/gallery/color/named_colors.html
https://root-forum.cern.ch/t/combining-roodatasets-in-pyroot/43615
https://github.com/root-project/root/blob/master/tutorials/roofit/rf401_importttreethx.py#L82

In	general,	things	get	complicated	when	one	is	forced	to	use	C++	STL	classes	from	Python.	So
for	example	in	the	case	where	a	std::unordered_map	is	expected,	it	would	be	good	to	have	a
pythonization	that	accepts	a	Python	dictionary	(both	std::unordered_map	and	the	Python
dictionary	are	hash	tables).

Other	more	complicated	opportunities	for	Pythonization	are	functions	that	take	a	RooArgList	or
a	RooArgSet.	These	should	be	Pythonized	to	accept	a	simple	Python	list	(or	maybe	iterable	in
general).

For	example,	this	code:

fy_1	=	ROOT.RooFormulaVar("fy_1",	"a0-a1*sqrt(10*abs(y))",
																										ROOT.RooArgList(y,	a0,	a1))

might	become

fy_1	=	ROOT.RooFormulaVar("fy_1",	"a0-a1*sqrt(10*abs(y))",[y,	a0,	a1])

5.	Work	on	documentation

We	have	to	find	a	way	to	add	doxygen	code	at	function	level	for	the	pythonizations,	not
only	as	class	level.

We	also	need	to	think	about	what	to	do	with	the	Python	docstrings.

