Cosmic Archaeology with Gravitational Waves from (Axion) Cosmic Strings

Yanou Cui

University of California, Riverside

arxiv: 171-1.03104 (PRD), 1808.08968 (JHEP)

YC with Marek Lewicki, David Morrissey and James Wells

arxiv: 1912.08832 (PRL), YC with Marek Lewicki and David Morrissey

arXiv:1910.04781 (PDU), 2106.09746, YC with Chia-Feng Chang

arxiv: 2012.07874 (PRD), YC with Barry Barish and Simeon Bird

International workshop on GW probes for BSM physics, Jul 12, 2021

GWs from Cosmic Strings

- Cosmic strings: strong motivations (U(1)' breaking, superstring theory, axion...)
- A leading cosmological/BSM source of GWs (SGWB, bursts), potentially strong signal, primary targets of LIGO, LISA

— General/basic aspects see earlier talks in this session

Outline of This Talk

Other new physics imprints in GWs from cosmic strings?

- Cosmic archaeology with GWs from (NG) cosmic strings:
 - Probe pre-BBN Hubble expansion history with f-spectrum of SGWB from cosmic strings: test the standard model of cosmology/particle physics, e.g. new eq. of state, new d.o.f?
 - GW bursts as signals of cosmic strings diluted by inflation
- Probe ALP DM models with GWs from global (axion) strings

How to distinguish SGWB from cosmic strings (or other cosmo sources) vs. astro SGWB?

• Use frequency domain information, e.g. with a midband GW experiment

(Also see Barry's keynote talk on Friday)

I. Cosmic archaeology with GWs from (NG) cosmic strings

-what we do not "know"

- The horizon of confidence: BBN (~1s-3 min after Big Bang)
- CMB light: a direct window back to ~400k yrs after the Big Bang

-what we do not "know"

- The horizon of confidence: BBN (~1s-3 min after Big Bang)
- CMB light: a direct window back to ~400k yrs after the Big Bang
- What happened before BBN?
 Standard cosmology theory: assumptions to be tested, many unknowns!

(scale of inflation/reheating? early matter domination/kination? early phase transitions? new d.o.f?...)

- the Primordial Dark Age

(Boyle and Steinhardt 2005, Boyle and Buonanno 2007)

What happened within the first ~ 1 sec?

The gap amplified on Log scale of temperature $T(\alpha a^{-1})!$

The Universe is RD with SM content from T_{eq} all the way back to the end of inflation: up to 24 orders of magnitudes on T scale! — **IS IT??**

-what we do not "know"

- The horizon of confidence: BBN (~1s-3 min after Big Bang)
- CMB light: a direct window back to ~400k yrs after the Big Bang
- What happened before BBN?
 Standard cosmology theory: assumptions to be tested, many unknowns!
 (scale of inflation/reheating?
 early matter domination? early
 phase transitions? new d.o.f?...)

-what we do not "know"

- The horizon of confidence: BBN (~1s-3 min after Big Bang)
- CMB light: a direct window back to ~400k yrs after the Big Bang
- What happened before BBN?
 Standard cosmology theory: assumptions to be tested, many unknowns!
 (scale of inflation/reheating?
 early matter domination? early
 phase transitions? new d.o.f?...)

• Direct observational probe? inflation + post-inflationary thermal history (Impact on Ω_{DM} , DM halo structure/detection!)

-what we do not "know"

- The horizon of confidence: BBN (~1s-3 min after Big Bang)
- CMB light: a direct window back to ~400k yrs after the Big Bang
- What happened before BBN?
 Standard cosmology theory: assumptions to be tested, many unknowns!
 (scale of inflation/reheating?
 early matter domination? early
 phase transitions? new d.o.f?...)

GW: the window of hope?

• Direct observational probe? inflation + post-inflationary thermal history (Impact on Ω_{DM} , DM halo structure/detection!)

GW Signatures from Cosmic Strings

- Gravitational waves emitted from oscillating string loops
 - → Relic stochastic GW background: continuous emission throughout the

string network history \bigstar (c.f. 1st order PT)

⇒ SGWB spectrum spanning a wide frequency range

Credit: Matt DePies/UW.

Stochastic GW Background from Cosmic Strings

We use a simplified loop size distribution (at formation) justified by recent simulation results (e.g. Blanco-Pillado and Olum 2017):

$$l_i = \alpha t_i, \quad \alpha \approx 0.1$$

The loop formation rate per unit V per unit time (t):

$$n(l,t) = \frac{C_{\text{eff}}(t_i)}{\alpha^2 t_i^4} \frac{a^3(t_i)}{a^3(t)}$$

After its creation, each loop radiates GW energy at a constant rate:

$$\frac{dE}{dt} = -\Gamma G \mu^2, \quad \Gamma \approx 50$$

Stochastic GW Background from Cosmic Strings

Consequently, the loop size decreases as

$$l = \alpha t_i - \Gamma G \mu \left(t - t_i \right)$$

The observed GW frequency today from a loop of size l

$$f = \frac{a(\tilde{t})}{a(t_0)} \frac{2k}{l}$$

k: oscillation mode dominates

Stochastic GW Background from Cosmic Strings

Putting things together:

-GW density per unit frequency seen today:

$$\Omega_{GW}(f) = \frac{f}{\rho_c} \frac{d\rho_{GW}}{df} = \sum_k \Omega_{GW}^{(k)}(f)$$

$$\Omega_{GW}^{(k)}(f) = \frac{1}{\rho_c} \frac{2k}{f} \frac{(0.1) \Gamma_k G \mu^2}{\alpha(\alpha + \Gamma G \mu)}$$
expansion parameter
$$\times \int_{t_F}^{t_0} d\tilde{t} \ \frac{C_{eff}(t_i)}{t_i^4} \left[\frac{a(\tilde{t})}{a(t_0)} \right]^5 \left[\frac{a(t_i)}{a(\tilde{t})} \right]^3 \Theta(t_i - t_F)$$

-Cosmic expansion history $H(t) \equiv \dot{a}/a$ is encoded $(a(\tilde{t}))!$

Testing Standard Cosmology w/GW Spectrum from Cosmic Strings

• An example: $G\mu = 2 \times 10^{-11}$, $\alpha = 0.1$ (in standard cosmology)

The GW Frequency-Time (Temperature) Correspondence

arxiv: 1711.03104, 1808.08968, YC with Lewicki, Morrissey and Wells

• Quantify/utilize the f-T correspondence

GW frequency \leftrightarrow temperature

GW with a given *f* was dominantly contributed by loops formed at a certain t/T

$$f_{\Delta} \simeq \sqrt{\frac{8}{z_{\rm eq}\alpha \Gamma G\mu}} \left[\frac{g_*(T_{\Delta})}{g_*(T_0)}\right]^{1/4} \left(\frac{T_{\Delta}}{T_0}\right) t_0^{-1}$$

Numerical fit:

$$f_{\Delta} = (8.67 \times 10^{-3} \,\text{Hz}) \, \left(\frac{T_{\Delta}}{\text{GeV}}\right) \left(\frac{0.1 \times 50 \times 10^{-11}}{\alpha \,\Gamma \,G\mu}\right)^{1/2} \left(\frac{g_*(T_{\Delta})}{g_*(T_0)}\right)^{\frac{8}{6}} \, \left(\frac{g_{*S}(T_0)}{g_{*S}(T_{\Delta})}\right)^{-\frac{7}{6}}$$

Experimental Detection Prospects

(f-T correspondence)

• Fig.: f_{Δ} required to test the standard cosmology up to radiation T_{Δ} for a range of $G\mu$, α =0.1. Shaded regions: signal within detection sensitivity by the corresponding GW detector.

Probing New Phases (Equation of States) in Cosmological Evolution

Non-standard cosmology (new e.o.s) well-motivated, e.g.

- Early matter domination ($\rho \propto a^{-3}$): baryogenesis, moduli...
- Kination ($\rho \propto a^{-6}$): DE, axion, inflation...

Impact on SGWB spectrum from cosmic strings:

$$H^2 = \frac{8\pi}{3}\rho, H^2 \propto a^{-n}$$

Probing New Phases in Cosmic History with Cosmic String GWs

Probing New (Massive) Degrees of Freedom

Cosmological Probe for (Massive) BSM Degrees of Freedom

- Additional d.o.f's: <u>ubiquitous</u> in BSM theories, maybe hundreds of them! (GUT, DM, SUSY, RS, hidden valley, twin Higgs, NNaturalness...)
- Massive d.o.f's: radiation in the early Universe (g_*), later freezeout/decay can't be traced by CMB ΔN_{eff} (unlike massless d.o.f)

— GW spectrum may provide a way! $(H^2 \propto g_*T^4)$

Gravitational Wave Bursts as Harbingers of Cosmic Strings Diluted by Inflation

(arxiv: 1912.08832 PRL, YC with Marek Lewicki and David Morrissey)

Inflation buries all relics before it (or shortly after it starts)?

A counter-example!

Inflation and Cosmic String Regrowth

Why is it possible?

L: correlation length
$$\rho_{\infty} \equiv \frac{\mu}{L^2}$$

During inflation:
$$L(t) = L_F e^{H_I(t-t_F)}$$

After inflation:
$$L \propto a, \, \rho_{\infty} \propto a^{-2}$$

$$\Delta N$$
 N_F t_I t_F t_E $L(t_F) \equiv L_F = \frac{1}{\zeta H_I}$

Compare: RD:
$$H^{-1} \propto d^2$$
, $\rho_r \propto a^{-4}$

MD:
$$H^{-1} \propto a^{3/2}, \rho_m \propto a^{-3}$$

Strings may grow back into horizon after inflation! (after $\tilde{z} \ LH \lesssim 1$)

Inflation and Cosmic String Regrowth

Why is it possible?

L: correlation length

$$\rho_{\infty} \equiv \frac{\mu}{L^2}$$

During inflation: $L(t) = L_F e^{H_I(t - t_F)}$

After inflation: $L \propto a, \, \rho_{\infty} \propto a^{-2}$

$$L(t_F) \equiv L_F = \frac{1}{\zeta H_I}$$

Compare: RD:
$$H^{-1} \propto d^2$$
, $\rho_r \propto a^{-4}$

MD:
$$H^{-1} \propto a^{3/2}, \rho_m \propto a^{-3}$$

Solve for string network evolution with VOS model:

$$\frac{dL}{dt} = (1 + \bar{v}^2) HL + \frac{\tilde{c}\bar{v}}{2}$$

$$\frac{d\bar{v}}{dt} = (1 - \bar{v}^2) \left[\frac{k(\bar{v})}{L} - 2H \bar{v} \right]$$

- Stochastic GW background: suppressed esp. at higher f (intuition: recall f-T correspondence)
- GW bursts: transient resolvable low z events due to cusps/kinks; subdominant to SGWB for standard strings, but can be leading signal now!

- Stochastic GW background: suppressed esp. at higher f (intuition: recall f-T correspondence)
- GW bursts: transient resolvable low z events due to cusps/kinks; subdominant to SGWB for standard strings, but can be leading signal now!

Beaming angle:
$$\theta_m(l, z, f) = [(1+z)fl]^{-\frac{1}{3}} < 1$$

Strain/waveform:
$$h(l, z, f) = \frac{f^{-q} l^{2-q}}{(1+z)^{q-1}} \frac{G\mu}{r(z)}$$
 $q = 4/3 \, (5/3) \text{ for cusps (kinks)}$

Burst event rate:
$$\frac{d^2R}{dVdl}(l,a,f) = \frac{\nu(l,z)}{(1+z)} \left(\frac{\theta_m(l,z,f)}{2}\right)^{3(2-q)} \Theta(1-\theta_m)$$

$$R_{\rm exp}(f) = \int_0^{z_*} dz \int_{\max(h_{\min}, h_{\rm exp})}^{h_{\max}} dh \, \frac{d^2R}{dz \, dh}(h, z, f)$$

SGWB as high z unresolved bursts:
$$\Omega_{\rm GW}(f) = \frac{4\pi^2 f^3}{3H_0^2} \int_{z_*}^{\infty} dz \, \int_{h_{\rm min}}^{h_{\rm max}} dh \; h^2 \, \frac{d^2 R}{dz \, dh}(h,z,f)$$

SGWB vs. GW burst signals (standard vs. diluted):

- Strong constraints on $G\mu$ based on SGWB alleviated (PPTA, LIGO...)
- ullet GW bursts important for low \widetilde{z}

SGWB vs. GW burst signals (standard vs. diluted):

- Strong constraints on $G\mu$ based on SGWB alleviated (PPTA, LIGO...)
 - GW bursts important for low \tilde{z}
- For very low $\tilde{z}\lesssim 10^3$ CMB bound alleviated as well, astrophysical signals (lensing, structure formation) as smoking-gun

— An interesting twist/application when switch gear to a global U(1)...

GWs from Axion Topological Defects Novel Probes of ALP DM Models

- Axion-like particle (ALP) DM: ultra-light (pseudo-)goldstone boson from a global U(1)_{PQ} breaking, leading alternative to WIMP paradigm, a lot of interest/effort recently; QCD axion, generic (hidden) ALPs also motivated (e.g. string axiverse)
- A relatively under-developed aspect of ALP studies: implication of <u>ALP</u> topological defects, potentially significant effects:

ALP cosmic strings/domain walls: indispensable companion of ALP particles for $U(1)_{PQ}$ breaking after inflation

(Rapidly increasing interest in the past few years)

GWs from Axion Topological Defects Novel Probes of ALP DM Models

- Axion-like particle (ALP) DM: ultra-light (pseudo-)goldstone boson from a global U(1)_{PQ} breaking, leading alternative to WIMP paradigm, a lot of interest/effort recently; QCD axion, generic (hidden) ALPs also motivated (e.g. string axiverse)
- A relatively under-developed aspect of ALP studies: implication of ALP topological defects, potentially significant effects:

ALP cosmic strings/domain walls: indispensable companion of ALP particles for $U(1)_{PQ}$ breaking after inflation

(Rapidly increasing interest in the past few years)

GW signature from axion cosmic strings?

- GW signature from global/axion cosmic strings: an overlooked, yet potentially important discovery channel
- Why Overlooked? "too small" by naive estimate

Sub-dominant relative to goldstone emission:

$$P_{\rm GW} \sim \Gamma G \mu^2 \ll P_g \sim \Gamma_g \eta^2,$$

$$\mu \sim \eta^2 {\rm log} \left(L/\delta \right) \ \ {\rm correlation \ length:} \ L \sim H^{-1}, {\rm string \ core \ width:} \ \delta \sim \eta^{-1}$$

$$N \equiv {\rm log}(L/\delta) \ -{\rm time-dependent \ parameter \ (later...)}$$

- GW signature from global/axion cosmic strings: an overlooked, yet potentially important discovery channel
- Why Overlooked? "too small" by naive estimate

Sub-dominant relative to goldstone emission:

```
P_{\rm GW} \sim \Gamma G \mu^2 \ll P_g \sim \Gamma_g \eta^2, \mu \sim \eta^2 {\rm log} (L/\delta) \quad {\rm correlation \ length:} \quad L \sim H^{-1}, {\rm string \ core \ width:} \quad \delta \sim \eta^{-1} N \equiv {\rm log}(L/\delta) - {\rm time-dependent \ parameter \ (later...)}
```

- BUT: rare decay mode can be discovery mode! (e.g. Higgs discovery, axion/goldstone search strategy model dependent...)
 - + GW signal universal, GW detector sensitivity keep improving...

(arXiv:1910.04781, 2106.09746 YC with Chia-Feng Chang)

Challenges:

- Limited literature (compared to NG/gauge strings)
- Rapid recent development of global string simulation: not converging, non-scaling, many to investigate (*challenge*: cover hierarchical scales)
- More complex for axion strings: cosmic strings + domain walls

(arXiv:1910.04781, 2106.09746 YC with Chia-Feng Chang)

Challenges:

- Limited literature (compared to NG/gauge strings)
- Rapid recent development of global string simulation: not converging, non-scaling, many to investigate (*challenge*: cover hierarchical scales)
- More complex for axion strings: cosmic strings + domain walls

Our approach:

- Start with the simple case: SGWB signal from global strings (massless goldstone) (→QCD axion→ALPs)
- Semi-analytical: VOS model (including Goldstone emission) calibrated with simulation results (low N)
- Complement simulations: simple extrapolation of low *N* data to late time evolution vs. solving evolution equation with essential physics encoded

SGWB Spectrum from Global Cosmic Strings

With standard cosmology (YC and Chang 2019, updated in 2021):

• Detectable with upcoming GW experiments! Supported by recent simulation findings (details differ) (Gorghetto, Hardy and Nicholaescu 2021; Figueroa, Hindmarsh, Lizarraga and Urrestilla 2020)

Comparison with NG strings, f-T Correspondence

- Global strings (solid) vs. NG strings (dashed):
 Overall smaller amplitude, spectrum redshifted,
 logarithmically declining tail
- Explanation: Goldstone emission dominance, short-lived loops, log factor in μ

• f-T correspondence: very different from NG, Insensitive to η , the same f corresponds to higher T \rightarrow probe up to $T\sim 10^8~GeV!$ (short-lived loops)

$$f_{\Delta} \simeq \frac{2}{\ell(\tilde{t})} \frac{a(t_{\Delta})}{a(t_0)} = \frac{2}{\alpha z_{\text{eq}} t_{\text{eq}} T_{\text{eq}}} \left[\frac{g_*(T_{\Delta})}{g_*(T_{\text{eq}})} \right]^{1/4} T_{\Delta}$$
$$\simeq (3.02 \times 10^{-6} \,\text{Hz}) \left(\frac{T_{\Delta}}{1 \,\text{GeV}} \right) \left(\frac{\alpha}{0.1} \right)^{-1} \left[\frac{g_*(T_{\Delta})}{g_*(T_{\text{eq}})} \right]^{1/4}$$

Cosmic archaeology with GWs from global strings

 SGWB with non-standard cosmology (early MD, kination):

• SGWB with new particle species in the early Universe:

III. Distinguish SGWB from cosmic strings (or other cosmo sources) from astro SGWB with frequency domain info

E.g. with a midband GW experiment: AEDGE, TianGo, Tianjin, DECIGO, BBO...

The Practical Challenge for Probing BSM: Astrophysical Sources of SGWB

SGWB can also originate from astrophysics!

e.g. With modeling assumptions LIGO/Virgo expect to detect stochastic GW bkg from <u>unresolved</u> binary BH/NS mergers, possibly overwhelms/confuses with cosmogenic signals in the LIGO f range...

- Possible solutions (developing!):
- ▶ Optimize statistical analysis in time domain: identify fine patterns, e.g. Gaussianity arXiv:1712.00688
- Resolve the "unresolved": subtract astro bkg by identifying them with future observations/detectors (e.g. + LISA, ET/CE, BBO) *e.g. arXiv: 1611.08943*

The Practical Challenge for Probing BSM: Astrophysical Sources of SGWB

- SGWB can also originate from astrophysics!
- e.g. With modeling assumptions LIGO/Virgo expect to detect stochastic GW bkg from <u>unresolved</u> binary BH/NS mergers, possibly overwhelms/confuses with cosmogenic signals in the LIGO f range...
- Possible solutions (developing!):
- ▶ Optimize statistical analysis in time domain: identify fine patterns, e.g. Gaussianity arXiv:1712.00688
- Resolve the "unresolved": subtract astro bkg by identifying them with future observations/detectors (e.g. + LISA, ET/CE, BBO) *e.g. arXiv: 1611.08943*
- but by the boundary of the bo

The Impact of a Midband Gravitational Wave Experiment On Detectability of Cosmological Stochastic Gravitational Wave Backgrounds

arxiv: 2012.07874 YC with Barry Barish and Simeon Bird (also see Barry's Fri. Talk)

• Midband: $10^{-2}-10~Hz$, cover the gap between LIGO and LISA, many proposals: (B-)DECIGO, TianGo, TianQin, MAGIS, AEDGE/AION, BBO...

The Impact of a Midband Gravitational Wave Experiment On Detectability of Cosmological Stochastic Gravitational Wave Backgrounds

arxiv: 2012.07874 YC with Barry Barish and Simeon Bird (also see Barry's Fri. Talk)

• Midband: $10^{-2}-10\ Hz$, cover the gap between LIGO and LISA, many proposals: (B-)DECIGO, TianGo, TianQin, MAGIS, AEDGE/AION, BBO...

Our goals

- Dedicated quantitative study (explicit modeling of astro and cosmo sources): how a future midband GW experiment complements LIGO + LISA (continuous coverage over a wide f range) for improving sensitivity to cosmo SGWB and separation from astro SGWB
- Help boost the science case for midband GW experiments from HEP/cosmo motivation

Results from likelihood analysis: Cosmic Strings

Constraints: mock data with astro sources only

Results from likelihood analysis: Cosmic Strings

• **Discovery**: mock data adding cosmo source with $G\mu = 10^{-16}$ (near LISA threshold)

- Strong curving degeneracy between string signal and EMRI
- LISA alone not able to correctly separate cosmo vs. astro SGWB
- Extra info from midband: greatly improves separation
- +TianGo: $G\mu = 4 \times 10^{-17} 1.7 \times 10^{-16}$
- + B-DECIGO: $G\mu = 6 \times 10^{-17} 1.65 \times 10^{-16}$

Conclusion

- Cosmic strings: a potentially strong, well-studied source of SGWB that can serve as a "standard candle" for probing very early Universe
 - a unique and powerful tool for reconstructing a timeline for pre-BBN cosmic history (the f-T correspondence)
- Cosmic strings may regrow back into horizon despite inflationary dilution and leave an imprint: GW bursts + suppressed SGWB, clues for (pre-)inflationary epoch?
- GWs from (global) axion strings/domain walls may be the smoking gun for dark matter...
- A midband GW experiment may have a significant impact for improving the sensitivity to SGWB from cosmic strings or other cosmological sources

Thank you!