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The aim:

Provide new understanding and explicit calculations for bubble friction in local 
equilibrium

The novelty:

We relate previous results in the literature and provide a new understanding in terms of 
entropy conservation

We confirm directly the friction effect by studying time-dependent solutions, and relate 
local friction to the field-dependence of enthalpy 

We also illustrate the effect for detonations in the wall frame

The plan:

Usual understanding of bubble friction

Friction in local equilibrium: previous literature

Friction in local equilibrium from local stress-energy conservation

Numerical studies
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       Usual understanding of bubble friction

4



  

Bubble basics
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Bubble basics: deflagration
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Bubble basics: detonation
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Bubble basics
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● Without friction effects, latent heat converts to bulk motion and bubbles are expected 
to accelerate towards luminal speeds (runaway bubbles)

● Colliding bubbles source gravitational waves

Large bubble velocities imply more energy available for conversion into gws

● Higgs bubbles could lead to electroweak baryogenesis, usually requiring low 
speeds

                                      It is crucial to understand friction!



  

● The usual treatment is based on the scalar equation of motion, averaged in plasma

● For particles in equilibrium one recovers the finite T effective potential

 
                                                        
                                                      Friction effect from deviations of equilibrium

Friction in the scalar equation of motion
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[Prokopec-Moore ’95]



  

 

Friction force per unit area
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Friction force per unit area
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(In the static wall frame)

 

Friction force per unit area
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Driving force (pressure from change 
in potential energy at equilibrium)

Friction per unit area, out of eq.
[Bödeker-Moore]



  

(In the static wall frame)

Alternatively, assuming an ultrarrelativistic wall, f does not change (no reflection)
 

Friction force per unit area
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Driving force (pressure from change 
in potential energy at equilibrium)

Friction per unit area, out of eq.
[Bödeker-Moore]

Vacuum driving force Total force from plasma, incl. friction
[Bödeker-Moore] c.f. Jessica Turner’s talk



  

● It would seem that constant vw  for               requires non-equilibrium effects. For 
relativistic bubbles:

● Leading order friction  vw-independent: allows runaways [Bödeker-Moore]

● Higher order effects vw-dependent: ultrarelativistic but subluminal speeds

[Bödeker-Moore] [Höche, Kozaczuk, Long, Turner, Wang]

● It is commonly assumed that there is no friction in local equilibrium

                                  

 

Friction in local equilibrium?
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       Local equilibrium: previous literature
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Phenomenological friction term

[Ignatius, Kajantie, Kurki-Suonio, Laine ‘93]    [Espinosa, Konstandin, No, Servant ‘10]

Subluminal velocity for deflagrations without friction?

 

Friction in local equilibrium?
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[Konstandin, No ‘10]

● First direct study of bubble velocity in local equilibrium.

● Subluminal velocities as a result of hydrodynamic equations causing the fluid to 
heat up in front of the bubbles, which reduces driving force

● Effect thought to happen only in deflagrations

 

Friction in local equilibrium
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[Barroso Mancha, Prokopec, Świeżewska ‘20]

● Stress-energy conservation plus Lorentz invariance, away from bubble wall

                                                            Driving force               Friction

● No distinction between detonations and deflagrations

● Friction grows with  vw:  no runaway behaviour

● D.o.f. in local equilibrium lead to larger friction than usually expected

 

Friction in local equilibrium
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● Is the hydrodynamic obstruction of [Konstandin, No]  the same effect as 
the  friction force of [Barroso Mancha, Prokopec, Świeżewska] ?

● If so, can one extend results of [Konstandin, No] to detonations?

● Where is friction encoded in the time-dependent, differential equations
for the scalar and plasma?

 

Open questions
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        Friction in equilibrium from local 

        stress-energy conservation
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Local stress-energy conservation
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[Ignatius, Kajantie, Kurki-Suonio, Laine ‘93]

Friction-like behaviour comes from field-dependence of  



  

● Pressure             free-energy density             finite T corrections to potential

● Calculable in arbitrary model from finite T field theory 

● Standard thermodynamical identities relate entropy/enthalpy to pressure

● Everything follows from the thermal effective potential!
   

     Matches direct computations of [Barroso Mancha, Prokopec, Świeżewska] 

 

 

It is all about pressure
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Total entropy conservation
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Total entropy conservation
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Total entropy conservation

● Integrate over spatial volume with fluid at rest at the boundary:
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Total entropy conservation

● Integrate over spatial volume with fluid at rest at the boundary:

● Entropy density dominated by relativistic degrees of freedom

● Phase transition makes some d.o.f heavy: local decrease in entropy density from 
decrease in 

● This has to be compensated by a heating effect in front or behind the bubble wall
     
       Connection to [Konstandin, No], but should also apply to detonations
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Assuming stationary regime in the wall frame  

                                                                    Also solved in [Konstandin, No]
                                                                    cf  [Espinosa, Konstandin, No, Servant]

From the second equation, comparing 2 sides of the wall where

Friction force of [Barroso Mancha, Prokopec, Świeżewska] recovered when 

assuming constant         across wall

                Same effect as hydrodynamic obstruction of [Konstandin, No]  
                                                                       

     

 

 

Planar wall frame
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Reduction to single scalar equation
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                                                             [Ignatius, Kajantie, Kurki-Suonio, Laine]
                 

Reduction to single scalar equation
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                                                             [Ignatius, Kajantie, Kurki-Suonio, Laine]
                 

Boundary conditions 

Additionally, expect that in broken phase field goes to a minimum [Konstandin, No]

These conditions fix       in terms of      . Latter fixed by nucleation temperature away 
from wall (accounting from extra hydrodynamic profile for deflagrations)

Reduction to single scalar equation
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        Numerical studies
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SM extension by N additional complex singlets allowing for first order phase 
transition for the Higgs

                         Higgs                           Extra scalars

Pressure from thermal corrections to potential in high-T expansion

   

 

 

Example model
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● Obtained with neural network pre-trained with Mathematica solution 

Time-dependent deflagrations
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Time-dependent deflagrations
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Family of solutions without necessarily imposing

Friction force grows with velocity!

Physical case with                         corresponds to right endpoint of curves 

Static deflagrations in wall frame
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Physical solution:

       Static solution near wall                 Self-similar hydrodynamic profile

 

Static deflagrations in wall frame
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● The solutions                                                     are actually multivalued, and so is the 
“pseudopotential” 

● We find that a branch of solutions with larger fluid velocities supports static 
detonation solutions

● We have found that the friction force can deviate from [Barroso Mancha et al] by a 
factor of  3

   

 

 

Novel static detonations in wall frame
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Self-similar hydrodynamic profile                                   Static solution near wall     
              

 

Static detonation solutions in wall frame
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Conclusions
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Even in local equilibrium, there is a non-dissipative, friction-like backreaction 
effect 

This effect is behind the runaway obstruction of [Konstandin, No] and the friction 
force of [Barroso Mancha, Prokopec, Świeżewska] 

We provided an intuitive understanding based on entropy conservation

By solving the time-dependent equations for bubble propagation, we showed that the 
backreaction is generated locally by the field-derivatives of the enthalpy 

We showed that, as expected from the results of [Barroso Mancha et et al], the 
backreaction exists for detonations, yet accurate estimates of the friction force 
require tracking changes of          across the bubble.
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Thank you!
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