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Cosmological first-order phase transitions

Figure: Cutting et al. arXiv:1906.00480.

I Transition dynamics
- Bubbles nucleate, expand and collide
- This creates long-lived fluid flows, and gravitational waves

I Observable remnants
Such as (nB − nB̄)/s, stochastic gravitational wave backgrounds,
topological defects, magnetic fields, . . .

⇒ new probe of particle physics
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Gravitational waves versus colliders

I LISA (2034)

I Taiji (early 2030s)

I DECIGO (&2030s)

I . . .

I LHC Run 3 (2022)

I High Lumi LHC (2027)

I Future Higgs factory (?)

I . . .
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Gravitational waves from phase transitions: the pipeline

Figure: The Light Interferometer Space Antenna (LISA) pipeline
L → SNR(f), Caprini et al. arXiv:1910.13125
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Sound predictions
I How reliable are current predictions?

I Where do uncertainties come from?

I How to overcome them?
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Perturbative sensitivity
I GW spectra of first-order phase transitions in any given

specific model are very sensitive to details of calculation.

10-2 10-1

Figure: Renormalisation scale dependence of GW spectrum at one parameter

point in SMEFT, Croon et al. arXiv:2009.10080.
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Unwrapping perturbative sensitivity

I ΩGW depends very strongly on the phase transition
parameters,

ΩGW ∝
∆θ2

∗
T 8∗

.

I Uncertainties in these parameters are themselves quite large

100 120 140 160 180
Tc (GeV)

4d 1- loop Arnold- Espinosa resum.

4d 1- loop Parwani resum.

3d 2- loop

3d lattice

Figure: Theoretical uncertainties for Tc at one benchmark point in the
2HDM, Niemi et al. arXiv:1904.01329.
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Origins of theoretical uncertainties

I Infrared enhancements at high-T
Due to the high occupancy of infrared bosons, the effective

expansion parameter αeff grows

αeff ∼ g2 1

1− ep/T ≈ g
2T

p
,

so lighter modes are more strongly coupled:

hard : p ∼ πT⇒ αeff ∼ g2,

soft : p ∼ gT⇒ αeff ∼ g,
ultrasoft : p ∼ g2T⇒ αeff ∼ 1.

I Effective field theory
3d EFTs provide a means to organise calculations involving
these different modes and couplings. (See Weir’s talk.)

Farakos et al. ’94, Braaten & Nieto ’95, Kajantie et al. ’95
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Lattice vs perturbation theory
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The theory

I Real, singlet scalar extension of the SM (xSM):

L = LSM + Lsinglet + Lportal ,

Lsinglet =
1

2
(∂µφ)2 − V (φ) ,

V (φ) = σφ+
1

2
m2φ2 +

1

3!
gφ3 +

1

4!
λφ4 .

Focus on phase transition in the singlet direction.

I The 3d EFT:

L3=
1

2
(∂iφ3)2 + V3(φ3) ,

V3(φ3)= σ3φ3 +
1

2
m2

3φ
2
3 +

1

3!
g3φ

3
3 +

1

4!
λ3φ

4
3 .

Can think of φ3 as the zero Matsuara mode.
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Lattice simulations

I Monte-Carlo simulations of 3d EFT sample the thermal distribution

of field configurations, p ∝ e−H[φ]/T .
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I Efficient update algorithms known. Kajantie et al. ’95

I Superrenormalisability ⇒ exact lattice-continuum relations. Laine ’95
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Perturbative expansion in 3d EFT

I In general loops within the 3d EFT are suppressed by

λ3

m3
,

g2
3

m3
3

.

I Near Tc, the effective mass is m3 ∼ |g3|/
√
λ3, and hence the

3d loop expansion parameter is

α3 =
~

(4π)

λ
3/2
3

|g3|
.

I This diverges as one approaches the Z2-symmetric
second-order transition ⇒ perturbation theory breaks down
completely.
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Results: lattice versus perturbation theory
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OG arXiv:2101.05528
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Implications

What does this teach us about this theory?
I (RG improved) perturbation theory is very accurate at high

orders for α3 . 1

I EFT results can be applied to e.g. xSM

What about other 3d EFTs?
I Theories with two scale hierarchies? ← typically α3 ∼ λ1/4

I Non-Abelian gauge theories? ← high orders not computable

Neither of these are deal-breakers, so there is promise.
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Perturbation theory and gravitational waves
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Figure: Renormalisation scale dependence of GW spectrum at one parameter

point in Z2-xSM, OG & Tenkanen arXiv:2104.04399.
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Conclusions

I Phase transitions may be observable by GW detectors

I Calculational developments necessary for reliable ΩGW

predictions

I Effective field theory provides suitable tools (see Weir’s talk)

I For real scalar theory, high order perturbation theory agrees
very well with lattice up to α3 . 1

I Promising for more difficult theories

Thanks for listening!
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Backup slides



QFT at high temperatures
I Equilibrium thermodynamics can be formulated in R3 × S1.

I Fields are expanded into Fourier (Matsubara) modes:

Φ(x, τ) =
∑
n even

φn(x)eiπTnτ ← boson

Ψ(x, τ) =
∑
n odd

ψn(x)eiπTnτ ← fermion

I Effective masses of Matsubara modes are

m2
n = m2 + (nπT )2
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Comparing uncertainties
I Renormalisation scale dependence appears to be the largest source

of theoretical uncertainty, ∆ΩGW/ΩGW ∼ 102−3 in the SMEFT,

and can be as large as ∼ 1010 in e.g. xSM.
I Some sources (e.g. inconsistencies) are hard to estimate.

660 680 700

Figure: Sources of theoretical uncertainty in ΩGW for the SMEFT, Croon
et al. arXiv:2009.10080. See also Guo et al. arXiv:2103.06933.
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Loop versus coupling expansions

Veff = #g2 + #g3 + #g4 + . . .

Low temperature

loop order included error

tree level O(g2) O(g4)
one loop O(g4) O(g6)
two loop O(g6) O(g8)
three loop O(g8) O(g10)
four loop O(g10) O(g12)
five loop O(g12) O(g14)

High temperature

loop order included error

tree level O(g2)
one loop O(g2) O(g3)
one loop∗ O(g3) O(g4)
two loop∗ O(g4) O(g5)
three loop∗ O(g5) O(g6)
four loop∗ O(g6 ln g) O(g6)
five loop∗ O(g6 ln g) O(g6)

∗resummed

Lowest order at which RG improvement is possible
OG & Tenkanen arXiv:2104.04399
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Comparing orders
Dramatic improvements at O(g4)
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Figure: Unphysical renormalisation scale dependence of critical
temperature at benchmark points in xSM, OG & Tenkanen
arXiv:2104.04399.
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Phase diagram of EFT
By making the following shift

φ3 → −
g3

λ3
+ φ3 ,

the bare potential takes the form,

V3 =

(
σ3 +

g3
3

3λ2
3

− g3m
2
3

λ3

)
︸ ︷︷ ︸

σ̃3(T )

φ3 +
1

2

(
m2

3 −
g2

3

2λ3︸ ︷︷ ︸
r(T )

+δm2
3

)
φ2

3 +
1

4!
λ3φ

4
3 .
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Results: lattice vs (unimproved) perturbation theory
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Results: approaching the second-order phase transition
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