Reliable predictions for cosmological phase transitions

Oliver Gould University of Nottingham, UK

Gravitational Wave Probes of Physics Beyond Standard Model 12 July, 2021

Collaborators

Many important contributions for today's talk due to:

Djuna Croon Andreas Ekstedt Sinan Guyer Joonas Hirvonen Anna Kormu Jonathan Kozaczuk Johan Löfgren Lauri Niemi Michael Ramsey-Musolf Kari Rummukainen Philipp Schicho Satumaaria Sukuvaara Tuomas Tenkanen David Weir Graham White

Cosmological first-order phase transitions

Figure: Cutting et al. arXiv:1906.00480.

Transition dynamics

- Bubbles nucleate, expand and collide
- This creates long-lived fluid flows, and gravitational waves

Observable remnants

Such as $(n_B - n_{\bar{B}})/s$, stochastic gravitational wave backgrounds, topological defects, magnetic fields, . . .

 \Rightarrow new probe of particle physics

Gravitational waves versus colliders

► LISA (2034)
 ► Taiji (early 2030s)
 ► DECIGO (≳2030s)

LHC Run 3 (2022)
High Lumi LHC (2027)
Future Higgs factory (?)

Gravitational waves from phase transitions: the pipeline

Figure: The Light Interferometer Space Antenna (LISA) pipeline $\mathscr{L} \to SNR(f)$, Caprini et al. arXiv:1910.13125

Sound predictions

- ► How reliable are current predictions?
- Where do uncertainties come from?
- How to overcome them?

Perturbative sensitivity

GW spectra of first-order phase transitions in any given specific model are very sensitive to details of calculation.

Figure: Renormalisation scale dependence of GW spectrum at one parameter point in SMEFT, Croon et al. arXiv:2009.10080.

Unwrapping perturbative sensitivity

 Ω_{GW} depends very strongly on the phase transition parameters,

$$\Omega_{\rm GW} \propto \frac{\Delta \theta_*^2}{T_*^8}.$$

Uncertainties in these parameters are themselves quite large

Figure: Theoretical uncertainties for T_c at one benchmark point in the 2HDM, Niemi et al. arXiv:1904.01329.

Origins of theoretical uncertainties

Infrared enhancements at high-T
 Due to the high occupancy of infrared bosons, the effective expansion parameter α_{eff} grows

$$\alpha_{\rm eff} \sim g^2 \frac{1}{1 - e^{p/T}} \approx g^2 \frac{T}{p},$$

so lighter modes are more strongly coupled:

- $\begin{array}{ll} \mathsf{hard}: & p \sim \pi T \Rightarrow \alpha_{\mathrm{eff}} \sim g^2, \\ \mathsf{soft}: & p \sim gT \Rightarrow \alpha_{\mathrm{eff}} \sim g, \\ \mathsf{ultrasoft}: & p \sim g^2T \Rightarrow \alpha_{\mathrm{eff}} \sim 1. \end{array}$
- Effective field theory
 3d EFTs provide a means to organise calculations involving
 these different modes and couplings. (See Weir's talk.)

 Farakos et al. '94, Braaten & Nieto '95, Kajantie et al. '95

Lattice vs perturbation theory

The theory

Real, singlet scalar extension of the SM (xSM):

$$\begin{split} \mathscr{L} &= \mathscr{L}_{\rm SM} + \mathscr{L}_{\rm singlet} + \mathscr{L}_{\rm portal} \;, \\ \mathscr{L}_{\rm singlet} &= \frac{1}{2} (\partial_{\mu} \phi)^2 - V(\phi) \;, \\ V(\phi) &= \sigma \phi + \frac{1}{2} m^2 \phi^2 + \frac{1}{3!} g \phi^3 + \frac{1}{4!} \lambda \phi^4 \end{split}$$

Focus on phase transition in the singlet direction.The 3d EFT:

$$\mathcal{L}_{3} = \frac{1}{2} (\partial_{i} \phi_{3})^{2} + V_{3}(\phi_{3}) ,$$

$$V_{3}(\phi_{3}) = \sigma_{3} \phi_{3} + \frac{1}{2} m_{3}^{2} \phi_{3}^{2} + \frac{1}{3!} g_{3} \phi_{3}^{3} + \frac{1}{4!} \lambda_{3} \phi_{3}^{4} .$$

Can think of ϕ_3 as the zero Matsuara mode.

Lattice simulations

Monte-Carlo simulations of 3d EFT sample the thermal distribution of field configurations, $p \propto e^{-H[\phi]/T}$.

Perturbative expansion in 3d EFT

In general loops within the 3d EFT are suppressed by

$$rac{\lambda_3}{m_3}, \quad rac{g_3^2}{m_3^3}.$$

▶ Near T_c , the effective mass is $m_3 \sim |g_3|/\sqrt{\lambda_3}$, and hence the 3d loop expansion parameter is

$$\alpha_3 = \frac{\hbar}{(4\pi)} \frac{\lambda_3^{3/2}}{|g_3|}.$$

► This diverges as one approaches the Z₂-symmetric second-order transition ⇒ perturbation theory breaks down completely.

Results: lattice versus perturbation theory

$$\begin{aligned} \frac{1}{v_0} \Delta \langle \bar{\phi}_3 \rangle &= 2 + \sqrt{3} \; \alpha_3 + \frac{1}{2} \left(1 + 2 \log \tilde{\mu}_3 \right) \alpha_3^2 \\ &+ \sqrt{3} \left[-\frac{3}{8\sqrt{2}} \xi + \frac{21}{32} \mathsf{Li}_2 \frac{1}{4} - \frac{7\pi^2}{128} - \frac{1}{2} + \frac{21}{64} \log^2 \frac{4}{3} + \frac{5}{8} \log \frac{4}{3} \right] \alpha_3^3 \\ &+ O \left(\alpha_3^4 \right) \end{aligned}$$
OG arXiv:2101.05528

Implications

What does this teach us about this theory?

- ▶ (RG improved) perturbation theory is very accurate at high orders for $\alpha_3 \lesssim 1$
- EFT results can be applied to e.g. xSM

What about other 3d EFTs?

- ▶ Theories with two scale hierarchies? ← typically $\alpha_3 \sim \lambda^{1/4}$
- ► Non-Abelian gauge theories? ← high orders not computable Neither of these are deal-breakers, so there is promise.

Perturbation theory and gravitational waves

Figure: Renormalisation scale dependence of GW spectrum at one parameter point in Z_2 -xSM, OG & Tenkanen arXiv:2104.04399.

Conclusions

Phase transitions may be observable by GW detectors

- Calculational developments necessary for reliable Ω_{GW} predictions
- Effective field theory provides suitable tools (see Weir's talk)
- ▶ For real scalar theory, high order perturbation theory agrees very well with lattice up to $\alpha_3 \lesssim 1$
- Promising for more difficult theories

Conclusions

Phase transitions may be observable by GW detectors

- Calculational developments necessary for reliable Ω_{GW} predictions
- Effective field theory provides suitable tools (see Weir's talk)
- ▶ For real scalar theory, high order perturbation theory agrees very well with lattice up to $\alpha_3 \lesssim 1$
- Promising for more difficult theories

Thanks for listening!

Backup slides

QFT at high temperatures

• Equilibrium thermodynamics can be formulated in $\mathbb{R}^3 \times S^1$.

Fields are expanded into Fourier (Matsubara) modes:

$$\begin{split} \Phi(\mathbf{x},\tau) &= \sum_{n \text{ even}} \phi_n(\mathbf{x}) e^{i\pi T n \tau} \leftarrow \text{boson} \\ \Psi(\mathbf{x},\tau) &= \sum_{n \text{ odd}} \psi_n(\mathbf{x}) e^{i\pi T n \tau} \leftarrow \text{fermion} \end{split}$$

Effective masses of Matsubara modes are

$$m_n^2 = m^2 + (n\pi T)^2$$

Comparing uncertainties

► Renormalisation scale dependence appears to be the largest source of theoretical uncertainty, $\Delta\Omega_{\rm GW}/\Omega_{\rm GW} \sim 10^{2-3}$ in the SMEFT, and can be as large as $\sim 10^{10}$ in e.g. xSM.

Some sources (e.g. inconsistencies) are hard to estimate.

Figure: Sources of theoretical uncertainty in Ω_{GW} for the SMEFT, Croon et al. arXiv:2009.10080. See also Guo et al. arXiv:2103.06933.

Loop versus coupling expansions

$$V_{\text{eff}} = \#g^2 + \#g^3 + \#g^4 + \dots$$

Low temperature

High temperature

loop order	included	error	loop order	included	error
tree level	$O(g^2)$	$O(g^4)$	tree level		$O(g^2)$
one loop	$O(g^4)$	$O(g^6)$	one loop	$O(g^2)$	$O(g^3)$
two loop	$O(g^6)$	$O(g^8)$	one loop*	$O(g^3)$	$O(g^4)$
three loop	$O(g^8)$	$O(g^{10})$	two loop*	$O(g^4)$	$O(g^5)$
four loop	$O(g^{10})$	$O(g^{12})$	three $loop^*$	$O(g^5)$	$O(g^6)$
five loop	$O(g^{12})$	$O(g^{14})$	four loop*	$O(g^6 \ln g)$	$O(g^6)$
			five loop*	$O(g^6 \ln g)$	$O(g^6)$

* resummed

Lowest order at which RG improvement is possible

OG & Tenkanen arXiv:2104.04399

Comparing orders

Dramatic improvements at $O(g^4)$

Figure: Unphysical renormalisation scale dependence of critical temperature at benchmark points in xSM, OG & Tenkanen arXiv:2104.04399.

Phase diagram of EFT

By making the following shift

$$\phi_3 \to -\frac{g_3}{\lambda_3} + \phi_3 \; ,$$

the bare potential takes the form,

$$V_{3} = \underbrace{\left(\sigma_{3} + \frac{g_{3}^{3}}{3\lambda_{3}^{2}} - \frac{g_{3}m_{3}^{2}}{\lambda_{3}}\right)}_{\tilde{\sigma}_{3}(T)} \phi_{3} + \frac{1}{2} \left(\underbrace{m_{3}^{2} - \frac{g_{3}^{2}}{2\lambda_{3}}}_{r(T)} + \delta m_{3}^{2}\right) \phi_{3}^{2} + \frac{1}{4!}\lambda_{3}\phi_{3}^{4} .$$

Results: lattice vs (unimproved) perturbation theory

OG arXiv:2101.05528

Results: approaching the second-order phase transition

OG arXiv:2101.05528