Reliable predictions for cosmological phase transitions

Oliver Gould
University of Nottingham, UK

Gravitational Wave Probes of Physics Beyond Standard Model
12 July, 2021
Collaborators

Many important contributions for today’s talk due to:

Djuna Croon
Andreas Ekstedt
Sinan Guyer
Joonas Hirvonen
Anna Kormu
Jonathan Kozaczuk
Johan Löfgren
Lauri Niemi
Michael Ramsey-Musolf
Kari Rummukainen
Philipp Schicho
Satumaaria Sukuvaara
Tuomas Tenkanen
David Weir
Graham White
Cosmological first-order phase transitions

Figure: Cutting et al. arXiv:1906.00480.

- Transition dynamics
 - Bubbles nucleate, expand and collide
 - This creates long-lived fluid flows, and gravitational waves

- Observable remnants
 Such as \((n_B - n_{\bar{B}})/s\), stochastic gravitational wave backgrounds, topological defects, magnetic fields,
 \[
 \Rightarrow \text{ new probe of particle physics}
 \]
Gravitational waves versus colliders

- LISA (2034)
- Taiji (early 2030s)
- DECIGO (>2030s)
- . . .

- LHC Run 3 (2022)
- High Lumi LHC (2027)
- Future Higgs factory (?)
- . . .
Gravitational waves from phase transitions: the pipeline

Figure: The Light Interferometer Space Antenna (LISA) pipeline $\mathcal{L} \rightarrow \text{SNR}(f)$, Caprini et al. arXiv:1910.13125
Sound predictions

- How reliable are current predictions?
- Where do uncertainties come from?
- How to overcome them?
Perturbative sensitivity

- GW spectra of first-order phase transitions in any given specific model are very sensitive to details of calculation.

Figure: Renormalisation scale dependence of GW spectrum at one parameter point in SMEFT, Croon et al. arXiv:2009.10080.
Unwrapping perturbative sensitivity

- Ω_{GW} depends very strongly on the phase transition parameters,

$$\Omega_{GW} \propto \frac{\Delta \theta^2}{T^8_*}.$$

- Uncertainties in these parameters are themselves quite large

Figure: Theoretical uncertainties for T_c at one benchmark point in the 2HDM, Niemi et al. arXiv:1904.01329.
Origins of theoretical uncertainties

- **Infrared enhancements at high-T**
 Due to the high occupancy of infrared bosons, the effective expansion parameter α_{eff} grows

 \[
 \alpha_{\text{eff}} \sim g^2 \frac{1}{1 - e^{p/T}} \approx g^2 \frac{T}{p},
 \]

 so lighter modes are more strongly coupled:

 - **hard** : $p \sim \pi T \Rightarrow \alpha_{\text{eff}} \sim g^2$
 - **soft** : $p \sim gT \Rightarrow \alpha_{\text{eff}} \sim g$
 - **ultrasoft** : $p \sim g^2 T \Rightarrow \alpha_{\text{eff}} \sim 1$

- **Effective field theory**
 3d EFTs provide a means to organise calculations involving these different modes and couplings. (See Weir’s talk.)

 Farakos et al. ’94, Braaten & Nieto ’95, Kajantie et al. ’95
Lattice vs perturbation theory
The theory

- Real, singlet scalar extension of the SM (xSM):

\[\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{\text{singlet}} + \mathcal{L}_{\text{portal}}, \]

\[\mathcal{L}_{\text{singlet}} = \frac{1}{2}(\partial_\mu \phi)^2 - V(\phi), \]

\[V(\phi) = \sigma \phi + \frac{1}{2}m^2 \phi^2 + \frac{1}{3!}g\phi^3 + \frac{1}{4!}\lambda\phi^4. \]

Focus on phase transition in the singlet direction.

- The 3d EFT:

\[\mathcal{L}_3 = \frac{1}{2}(\partial_i \phi_3)^2 + V_3(\phi_3), \]

\[V_3(\phi_3) = \sigma_3 \phi_3 + \frac{1}{2}m^2_3 \phi_3^2 + \frac{1}{3!}g_3 \phi_3^3 + \frac{1}{4!}\lambda_3 \phi_3^4. \]

Can think of ϕ_3 as the zero Matsuyura mode.
Lattice simulations

- Monte-Carlo simulations of 3d EFT sample the thermal distribution of field configurations, $p \propto e^{-H[\phi]/T}$.

- Efficient update algorithms known. \textcite{kajantieetal95}

- Superrenormalisability \Rightarrow exact lattice-continuum relations. \textcite{laine95}

\begin{itemize}
 \item $g_3/\lambda_3^{3/2} = -0.3$, $a\lambda_3 = 2$
 \item $g_3/\lambda_3^{3/2} = -0.3$, $L\lambda_3 = 48$
\end{itemize}
Perturbative expansion in 3d EFT

- In general loops within the 3d EFT are suppressed by
 \[\frac{\lambda_3}{m_3}, \quad \frac{g_3^2}{m_3^3}. \]

- Near T_c, the effective mass is $m_3 \sim |g_3|/\sqrt{\lambda_3}$, and hence the 3d loop expansion parameter is
 \[\alpha_3 = \frac{\hbar}{(4\pi)} \frac{\lambda_3^{3/2}}{|g_3|}. \]

- This diverges as one approaches the Z_2-symmetric second-order transition \Rightarrow perturbation theory breaks down completely.
Results: lattice versus perturbation theory

\[\frac{1}{v_0} \Delta \langle \bar{\phi}_3 \rangle = 2 + \sqrt{3} \alpha_3 + \frac{1}{2} (1 + 2 \log \tilde{\mu}_3) \alpha_3^2 \]

\[+ \sqrt{3} \left[-\frac{3}{8\sqrt{2}} \xi + \frac{21}{32} \text{Li}_2 \frac{1}{4} - \frac{7\pi^2}{128} - \frac{1}{2} + \frac{21}{64} \log^2 \frac{4}{3} + \frac{5}{8} \log \frac{4}{3} \right] \alpha_3^3 \]

\[+ O (\alpha_3^4) \]

OG arXiv:2101.05528
Implications

What does this teach us about this theory?

- (RG improved) perturbation theory is very accurate at high orders for $\alpha_3 \lesssim 1$
- EFT results can be applied to e.g. xSM

What about other 3d EFTs?

- Theories with two scale hierarchies? \leftarrow typically $\alpha_3 \sim \lambda^{1/4}$
- Non-Abelian gauge theories? \leftarrow high orders not computable

Neither of these are deal-breakers, so there is promise.
Perturbation theory and gravitational waves

Figure: Renormalisation scale dependence of GW spectrum at one parameter point in Z_2-xSM, OG & Tenkanen arXiv:2104.04399.
Conclusions

- Phase transitions may be observable by GW detectors
- Calculational developments necessary for reliable Ω_{GW} predictions
- Effective field theory provides suitable tools (see Weir's talk)
- For real scalar theory, high order perturbation theory agrees very well with lattice up to $\alpha_3 \lesssim 1$
- Promising for more difficult theories
Conclusions

- Phase transitions may be observable by GW detectors
- Calculational developments necessary for reliable Ω_{GW} predictions
- Effective field theory provides suitable tools (see Weir’s talk)
- For real scalar theory, high order perturbation theory agrees very well with lattice up to $\alpha_3 \lesssim 1$
- Promising for more difficult theories

Thanks for listening!
Backup slides
QFT at high temperatures

Equilibrium thermodynamics can be formulated in $\mathbb{R}^3 \times S^1$.

Fields are expanded into Fourier (Matsubara) modes:

\[
\Phi(x, \tau) = \sum_{n \text{ even}} \phi_n(x) e^{i\pi T n \tau} \leftarrow \text{boson}
\]

\[
\Psi(x, \tau) = \sum_{n \text{ odd}} \psi_n(x) e^{i\pi T n \tau} \leftarrow \text{fermion}
\]

Effective masses of Matsubara modes are

\[
m_n^2 = m^2 + (n\pi T)^2
\]
Comparing uncertainties

▶ Renormalisation scale dependence appears to be the largest source of theoretical uncertainty, $\Delta \Omega_{GW}/\Omega_{GW} \sim 10^{2-3}$ in the SMEFT, and can be as large as $\sim 10^{10}$ in e.g. xSM.

▶ Some sources (e.g. inconsistencies) are hard to estimate.

Figure: Sources of theoretical uncertainty in Ω_{GW} for the SMEFT, Croon et al. arXiv:2009.10080. See also Guo et al. arXiv:2103.06933.
Loop versus coupling expansions

\[V_{\text{eff}} = \#g^2 + \#g^3 + \#g^4 + \ldots \]

Low temperature

<table>
<thead>
<tr>
<th>loop order</th>
<th>included</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree level</td>
<td>(O(g^2))</td>
<td>(O(g^4))</td>
</tr>
<tr>
<td>one loop</td>
<td>(O(g^4))</td>
<td>(O(g^6))</td>
</tr>
<tr>
<td>two loop</td>
<td>(O(g^6))</td>
<td>(O(g^8))</td>
</tr>
<tr>
<td>three loop</td>
<td>(O(g^8))</td>
<td>(O(g^{10}))</td>
</tr>
<tr>
<td>four loop</td>
<td>(O(g^{10}))</td>
<td>(O(g^{12}))</td>
</tr>
<tr>
<td>five loop</td>
<td>(O(g^{12}))</td>
<td>(O(g^{14}))</td>
</tr>
</tbody>
</table>

High temperature

<table>
<thead>
<tr>
<th>loop order</th>
<th>included</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree level</td>
<td>(O(g^2))</td>
<td>(O(g^4))</td>
</tr>
<tr>
<td>one loop</td>
<td>(O(g^2))</td>
<td>(O(g^3))</td>
</tr>
<tr>
<td>one loop*</td>
<td>(O(g^3))</td>
<td>(O(g^4))</td>
</tr>
<tr>
<td>two loop*</td>
<td>(O(g^4))</td>
<td>(O(g^5))</td>
</tr>
<tr>
<td>three loop*</td>
<td>(O(g^5))</td>
<td>(O(g^6))</td>
</tr>
<tr>
<td>four loop*</td>
<td>(O(g^6 \ln g))</td>
<td>(O(g^6))</td>
</tr>
<tr>
<td>five loop*</td>
<td>(O(g^6 \ln g))</td>
<td>(O(g^6))</td>
</tr>
</tbody>
</table>

*resummed

Lowest order at which RG improvement is possible

OG & Tenkanen arXiv:2104.04399
Comparing orders

Dramatic improvements at $O(g^4)$

Figure: Unphysical renormalisation scale dependence of critical temperature at benchmark points in xSM, OG & Tenkanen arXiv:2104.04399.
Phase diagram of EFT

By making the following shift

$$\phi_3 \rightarrow -\frac{g_3}{\lambda_3} + \phi_3$$

the bare potential takes the form,

$$V_3 = \left(\sigma_3 + \frac{g_3^3}{3\lambda_3^2} - \frac{g_3 m_3^2}{\lambda_3} \right) \phi_3 + \frac{1}{2} \left(m_3^2 - \frac{g_3^2}{2\lambda_3} + \delta m_3^2 \right) \phi_3^2 + \frac{1}{4!} \lambda_3 \phi_3^4.$$
Results: lattice vs (unimproved) perturbation theory

\[\alpha_3(\mu_3, L) = \frac{\bar{h}\lambda_3^{3/2}}{4\pi|g_3|} \]

\[\Delta \langle \bar{\phi}_3 \rangle / \sqrt{\lambda_3} \]

Graph showing the comparison between lattice and perturbation theory results for the parameter \(\Delta \langle \bar{\phi}_3 \rangle / \sqrt{\lambda_3} \) as a function of \(\alpha_3(\mu_3, L) = \frac{\bar{h}\lambda_3^{3/2}}{4\pi|g_3|} \).

OG arXiv:2101.05528
Results: approaching the second-order phase transition