ACTIONS

MARIE CURIE

Gravitational waves from metastable cosmic strings

Based on work in collaboration with W. Buchmiiller, V. Domcke, and H. Murayama
[1912.03695, 2009.10649, 2107.04578 (today)]

Kai Schmitz

MSCA Fellow in the CERN Theory Group

Gravitational Wave Probes of Physics Beyond Standard Model
Online workshop | Session on topological defects | 12 July 2021


https://arxiv.org/abs/1912.03695
https://arxiv.org/abs/2009.10649
https://arxiv.org/abs/2107.04578

Gravitational waves from stable cosmic strings

Cosmic strings:

[See also talk by Hitoshi + all other talks today]

= Topological defects after U(1)
breaking in the early Universe

[Ringeval: 1005.4842]



Gravitational waves from stable cosmic strings

Cosmic strings:

[See also talk by Hitoshi + all other talks today] - T0p0|0gica| defects after U(l)
breaking in the early Universe

= Network of long strings and
closed loops in scaling regime

[Ringeval: 1005.4842]



Gravitational waves from stable cosmic strings

[See also talk by Hitoshi + all other talks today]

[Ringeval: 1005.4842]

Cosmic strings:

= Topological defects after U(1)
breaking in the early Universe

= Network of long strings and
closed loops in scaling regime

= Parameters: string tension Gu
and loop size at production «



Gravitational waves from stable cosmic strings

[See also talk by Hitoshi + all other talks today]

[Ringeval

O =ne

1005.4842]

i0

@ e

Cosmic strings:

= Topological defects after U(1)
breaking in the early Universe

= Network of long strings and
closed loops in scaling regime

= Parameters: string tension Gu
and loop size at production «
Gravitational waves (GWs):

= Loop oscillations + GW bursts
from cusps and kinks on loops



Gravitational waves from stable cosmic strings

Cosmic strings:

[See also talk by Hitoshi + all other talks today] - T0p0|0gica| defects after U(l)

breaking in the early Universe

= Network of long strings and
closed loops in scaling regime

= Parameters: string tension Gu
and loop size at production «

Gravitational waves (GWs):

[Ringeval: 1005.4842] = Loop oscillations + GW bursts
from cusps and kinks on loops

Assumption: Energy loss via particle emission off closed loops is negligible
[Matsunami, Pogosian, Saurabh, Vachaspati: 1903.05102] [Hindmarsh, Lizarraga, Urio, Urrestilla: 2103.16248]



Stable cosmic strings and NANOGrav

[Blasi, Brdar, KS: 2009.06607]
[See also Ellis, Lewicki: 2009.06555]
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[Blasi, Brdar, KS: 2009.06607]
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Stable cosmic strings and NANOGrav

[Blasi, Brdar, KS: 2009.06607]
[See also Ellis, Lewicki: 2009.06555]
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©  Explain NANOGrav signal for G ~ 10~(191) and o ~ 0.1
©  GUT scale A ~ 1010 GeV points to G ~ 10~(78) (smaller a?)
©  Signal at higher frequencies too small for LIGO, Virgo, KAGRA



Cosmic strings and grand unification

[Dror, Hiramatsu, Kohri, Murayama, White: 1908.03227]
[See also King, Pascoli, Turner, Zhou: 2005.13549, 2106.15634]

Semi-simple unified groups
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UV embedding of the seesaw mechanism in GUT models:
Neutrino mass, leptogenesis, cosmic strings, GWSs, proton decay
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Cosmic strings and grand unification

[Dror, Hiramatsu, Kohri, Murayama, White: 1908.03227]
[See also King, Pascoli, Turner, Zhou: 2005.13549, 2106.15634]

P
Inflation that wipes out magnetic monopoles
mefries that forbid right-handed

GownZs SUEIXSU(RxSURImxU( 1ot SUEXU(T)x /
\ —~ _____/ K
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thermal Ieplggeneala

UV embedding of the seesaw mechanism in GUT models:
Neutrino mass, leptogenesis, cosmic strings, GWSs, proton decay

Example: Ggym x U(1)g—1 — Gg results in metastable cosmic strings:
quantum tunneling events lead to SO(10) monopole pair production

Assumption: Inflation dilutes monopoles; otherwise string—monopole gas



Monopole pair production

Decay rate per string length:

[Vilenkin: Nucl. Phys. B 196 (1982) 240]
[Preskill, Vilenkin: hep-ph/9209210]
[Monin, Voloshin: 0808.1693]
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Monopole pair production

Decay rate per string length:

[Vilenkin: Nucl. Phys. B 196 (1982) 240]
[Preskill, Vilenkin: hep-ph/9209210]
[Monin, Voloshin: 0808.1693]
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= String tension p, monopole mass m

= Strings are not topologically stable, decay on cosmological times scales
= Dynamics around the GUT scale — y/k ~ 1---10, metastable strings
= Dynamics around intermediate scale — /k > 10, quasistable strings

Monopoles with and without unconfined magnetic flux:
= Unconfined flux: MM annihilation, emission of massless gauge bosons
= No unconfined flux: energy loss only via emission of gravitational waves
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[Buchmiiller, Domcke, Murayama, KS: 1912.03695]

B— L phase transition after
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10Pey fields, /V;: right-handed neutrinos

109F  Maximal dark
matter mass

= [S]g_, = —1 — no matter parity
at low energies — metastable strings

Reheating temperature Ty, [GeV]

vg_1 ~ (3---6) x 1015 GeV

i [Buchmiller, KS, Vertongen: 1008.2355, 1104.2750]
g i [Buchmiiller, Domcke, KS: 1111.3872, 1202.6679, 1203.0285]
P TS S T T ST [Buchmiiller, Domcke, Kamada, KS: 1305.3392, 1309.7788]
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[Buchmiiller, Domcke, Murayama, KS: 1912.03695]

B— L phase transition after
1012 . o g .
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8 10 RN s . A .
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L = [S]g_; = —1 — no matter parity
z at low energies — metastable strings
2 10
2 ] .
vB_1 ~ (3---6) x 10" GeV
10° u [Buchmiiller, KS, Vertongen: 1008.2355, 1104.2750]
H T [Buchmiiller, Domcke, KS: 1111.3872, 1202.6679, 1203.0285]
0 121015 2x105 3x10° 4x10 5x10' 6x101° [Buchmiiller, Domcke, Kamada, KS: 1305.3392, 1309.7788]

Symmetry-breaking scale vg 1 [GeV]

Minimal alternative: SU(2) x U(1) triplet U(1) x U(1) doublets u(1)

[Buchmiiller: 2102.08923]



End of scaling when long string segments begin to enter the horizon:
[Leblond, Shlaer, Siemens: 0903.4686]

Fglts~TgH Mt ~Tgt2 vl =t~

(3)

%‘H
Q.

Scaling regime, t < ts

= Loops: emit GWs, decay into segments negligible

= Long strings: decay into segments on superhorizon
scales, chop off closed loops, GW emission negligible




End of scaling when long string segments begin to enter the horizon:
[Leblond, Shlaer, Siemens: 0903.4686]

Fglts ~TgH 1 tg ~Tyt2 ~ 1

=t~

%‘H
Q.

(3)

Scaling regime, t < ts

= Loops: emit GWs, decay into segments negligible
= Long strings: decay into segments on superhorizon

scales, chop off closed loops, GW emission negligible

Decay regime, t > t;

N -

= Loops: emit GWs and decay into segments

= Segments from loops and long strings: emit GWs

and decay into segments; no production of new loops



Formal description

Kinetic equation for the number densities of loops and segments, n and A:
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Formal description

Kinetic equation for the number densities of loops and segments, n and A:
Orn(l,t) =Sl t)—0[u(l,t)n(l,t)] —[BH(t)+Talln(t,t) (4)

Source term S:

= Loops from long strings (loop production function): S oc t=* 6§ (£ — act)
= Loops during the decay regime: S =0

= Segments from loops: S =g ln(/, )

= Segments from segments: S =2y [, d¢' i (¢, t)

Time derivative of the string length u = /:

= Long strings during scaling: u=3H (t) ¢ — 20/t

= Loops and segments when radiating off GWs: u = —Gu, — Gp
Challenge: Solve set of partial integro-differential equations in both the
scaling and decay regimes, match solutions at t = t;. (Plus, RD /MD.)



Number densities

Loop number density during the decay regime in the radiation era:
[Cf. Blanco-Pillado, Olum, Shlaer: 1309.6637] [Cf. Blanco-Pillado, Olum: 1709.02693] [See also talk by Jose Juan today]
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Loop number density during the decay regime in the radiation era:
[Cf. Blanco-Pillado, Olum, Shlaer: 1309.6637] [Cf. Blanco-Pillado, Olum: 1709.02693] [See also talk by Jose Juan today]
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because of new exponential suppression factor:
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= Time-resolved picture of loop decay in dependence of ¢ and t

IT oIM oMM oIM oMM _ (g)rr _(s)mm w(s)rr F)(S)HH

Similar results for n_, n_ , n_ , n. , n. , A, , N , ng :
~(s)mm ~(/)rr ~()rm ~(/)mm q o . q ~(N) .
ns T Nt NG 7 A . The integro-differential equation for Ay’ is

solved by an infinite series that needs be evaluated order by order.



Compute GW spectrum following the standard procedure:

Qp () = SMT;P % tto dt{;((tz))}“r’,,(a(t) 2’%) (7)
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Spectrum

Compute GW spectrum following the standard procedure:

ng<f>—i’if¥’°2fk tfid’-‘Laé?)r"(f&’ffﬂf) ")
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= Loop contribution almost always dominant (cr tebiond, Shiaer, Siemens: 0903 4686]
= Loop contributions scales like f2 at low f (cf. Buchmilier, Domeke, Murayoma, KS: 1912 03695]
= Suppress spectrum in nHz range, explain NANOGrav for larger Gp



Observational prospects

Extrapolate spectrum to large f and compare with LIGO, Virgo, KAGRA:
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= Close to prediction of supersymmetric B—L model (Gu = 1077)
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Observational prospects

Extrapolate spectrum to large f and compare with LIGO, Virgo, KAGRA:
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Current LIGO bound depends on prior assumptions (i collaboration: 2101.12130]

Close to prediction of supersymmetric B—L model (Gu > 10~7)

Tilt at PTA frequencies correlated with amplitude at LVK frequencies

LISA will probe the entire parameter space consistent with NANOGrav
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Conclusions and outlook

Metastable cosmic strings:

= Prediction in many GUT models when combined
/K with inflation to solve the monopole problem

= Exciting predictions for future PTA and
interferometer experiments

Next steps:
= Explore other directions in parameter space: «, I, F,
= Numerically simulate the dynamics of a metastable string network

= Other observables: MM annihilation, CMB spectral distortions, etc.?
Thank you very much for your attention!
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