

Gravitational waves from metastable cosmic strings

Based on work in collaboration with W. Buchmüller, V. Domcke, and H. Murayama [1912.03695, 2009.10649, 2107.04578 (today)]

Kai Schmitz
MSCA Fellow in the CERN Theory Group
Gravitational Wave Probes of Physics Beyond Standard Model
Online workshop | Session on topological defects | 12 July 2021

Gravitational waves from stable cosmic strings

Cosmic strings:

[See also talk by Hitoshi + all other talks today]

- Topological defects after $U(1)$ breaking in the early Universe
[Ringeval: 1005.4842]

Gravitational waves from stable cosmic strings

Cosmic strings:

[See also talk by Hitoshi + all other talks today]

- Topological defects after $U(1)$ breaking in the early Universe
- Network of long strings and closed loops in scaling regime
[Ringeval: 1005.4842]

Gravitational waves from stable cosmic strings

Cosmic strings:

[See also talk by Hitoshi + all other talks today]

- Topological defects after $U(1)$ breaking in the early Universe
- Network of long strings and closed loops in scaling regime
- Parameters: string tension $G \mu$ and loop size at production α
[Ringeval: 1005.4842]

Gravitational waves from stable cosmic strings

Cosmic strings:

[See also talk by Hitoshi + all other talks today]

[Ringeval: 1005.4842]

- Topological defects after $U(1)$ breaking in the early Universe
- Network of long strings and closed loops in scaling regime
- Parameters: string tension $G \mu$ and loop size at production α

Gravitational waves (GWs):

- Loop oscillations + GW bursts from cusps and kinks on loops

Gravitational waves from stable cosmic strings

Cosmic strings:

[See also talk by Hitoshi + all other talks today]

[Ringeval: 1005.4842]

- Topological defects after $U(1)$ breaking in the early Universe
- Network of long strings and closed loops in scaling regime
- Parameters: string tension $G \mu$ and loop size at production α

Gravitational waves (GWs):

- Loop oscillations + GW bursts from cusps and kinks on loops

Assumption: Energy loss via particle emission off closed loops is negligible
[Matsunami, Pogosian, Saurabh, Vachaspati: 1903.05102] [Hindmarsh, Lizarraga, Urio, Urrestilla: 2103.16248]

Stable cosmic strings and NANOGrav

[Blasi, Brdar, KS: 2009.06607]
[See also Ellis, Lewicki: 2009.06555]

(3) Explain NANOGrav signal for $G \mu \sim 10^{-(10 \cdots 11)}$ and $\alpha \sim 0.1$

Stable cosmic strings and NANOGrav

[Blasi, Brdar, KS: 2009.06607]
[See also Ellis, Lewicki: 2009.06555]

(3) Explain NANOGrav signal for $G \mu \sim 10^{-(10 \cdots 11)}$ and $\alpha \sim 0.1$
(2) GUT scale $\Lambda \sim 10^{15 \cdots 16} \mathrm{GeV}$ points to $G \mu \sim 10^{-(7 \cdots 8)}$ (smaller α ?)

Stable cosmic strings and NANOGrav

(3) Explain NANOGrav signal for $G \mu \sim 10^{-(10 \cdots 11)}$ and $\alpha \sim 0.1$
(2) GUT scale $\Lambda \sim 10^{15 \cdots 16} \mathrm{GeV}$ points to $G \mu \sim 10^{-(7 \cdots 8)}$ (smaller α ?)
(2) Signal at higher frequencies too small for LIGO, Virgo, KAGRA

Cosmic strings and grand unification

[Dror, Hiramatsu, Kohri, Murayama, White: 1908.03227]
[See also King, Pascoli, Turner, Zhou: 2005.13549, 2106.15634]

UV embedding of the seesaw mechanism in GUT models:
Neutrino mass, leptogenesis, cosmic strings, GWs, proton decay

Cosmic strings and grand unification

[Dror, Hiramatsu, Kohri, Murayama, White: 1908.03227]
[See also King, Pascoli, Turner, Zhou: 2005.13549, 2106.15634]

UV embedding of the seesaw mechanism in GUT models:
Neutrino mass, leptogenesis, cosmic strings, GWs, proton decay
Example: $G_{S M} \times U(1)_{B-L} \rightarrow G_{S M}$ results in metastable cosmic strings: quantum tunneling events lead to $S O(10)$ monopole pair production

Cosmic strings and grand unification

[Dror, Hiramatsu, Kohri, Murayama, White: 1908.03227]
[See also King, Pascoli, Turner, Zhou: 2005.13549, 2106.15634]

UV embedding of the seesaw mechanism in GUT models:
Neutrino mass, leptogenesis, cosmic strings, GWs, proton decay
Example: $G_{S M} \times U(1)_{B-L} \rightarrow G_{S M}$ results in metastable cosmic strings: quantum tunneling events lead to $S O(10)$ monopole pair production

Assumption: Inflation dilutes monopoles; otherwise string-monopole gas

Monopole pair production

Decay rate per string length:
 [Vilenkin: Nucl. Phys. B 196 (1982) 240]
 [Preskill, Vilenkin: hep-ph/9209210]
 [Monin, Voloshin: 0808.1693]
 $$
\begin{equation*} \Gamma_{d}=\frac{d \#}{d t d \ell}=\frac{\mu}{2 \pi} e^{-\pi \kappa}, \quad \kappa=\frac{m^{2}}{\mu} \tag{1} \end{equation*}
$$

- String tension μ, monopole mass m

Monopole pair production

Decay rate per string length:
 [Vilenkin: Nucl. Phys. B 196 (1982) 240]
 [Preskill, Vilenkin: hep-ph/9209210]
 [Monin, Voloshin: 0808.1693]
 $$
\begin{equation*} \Gamma_{d}=\frac{d \#}{d t d \ell}=\frac{\mu}{2 \pi} e^{-\pi \kappa}, \quad \kappa=\frac{m^{2}}{\mu} \tag{1} \end{equation*}
$$

- String tension μ, monopole mass m
- Strings are not topologically stable, decay on cosmological times scales

Monopole pair production

Decay rate per string length:
 [Vilenkin: Nucl. Phys. B 196 (1982) 240]
 [Preskill, Vilenkin: hep-ph/9209210]
 [Monin, Voloshin: 0808.1693]
 $$
\begin{equation*} \Gamma_{d}=\frac{d \#}{d t d \ell}=\frac{\mu}{2 \pi} e^{-\pi \kappa}, \quad \kappa=\frac{m^{2}}{\mu} \tag{1} \end{equation*}
$$

- String tension μ, monopole mass m
- Strings are not topologically stable, decay on cosmological times scales
- Dynamics around the GUT scale $\rightarrow \sqrt{\kappa} \sim 1 \cdots 10$, metastable strings

Monopole pair production

$$
\begin{align*}
& \text { Decay rate per string length: } \\
& \text { [Vilenkin: Nucl. Phys. B } 196 \text { (1982) 240] } \\
& \text { [Preskill, Vilenkin: hep-ph/9209210] } \\
& \text { [Monin, Voloshin: 0808.1693] } \\
& \qquad \Gamma_{d}=\frac{d \#}{d t d \ell}=\frac{\mu}{2 \pi} e^{-\pi \kappa}, \quad \kappa=\frac{m^{2}}{\mu} \tag{1}
\end{align*}
$$

- String tension μ, monopole mass m
- Strings are not topologically stable, decay on cosmological times scales
- Dynamics around the GUT scale $\rightarrow \sqrt{\kappa} \sim 1 \cdots 10$, metastable strings
- Dynamics around intermediate scale $\rightarrow \sqrt{\kappa} \gg 10$, quasistable strings

Monopole pair production

$$
\begin{align*}
& \text { Decay rate per string length: } \\
& \text { [Vilenkin: Nucl. Phys. B } 196 \text { (1982) 240] } \\
& \text { [Preskill, Vilenkin: hep-ph/9209210] } \\
& \text { [Monin, Voloshin: 0808.1693] } \\
& \qquad \Gamma_{d}=\frac{d \#}{d t d \ell}=\frac{\mu}{2 \pi} e^{-\pi \kappa}, \quad \kappa=\frac{m^{2}}{\mu} \tag{1}
\end{align*}
$$

- String tension μ, monopole mass m
- Strings are not topologically stable, decay on cosmological times scales
- Dynamics around the GUT scale $\rightarrow \sqrt{\kappa} \sim 1 \cdots 10$, metastable strings
- Dynamics around intermediate scale $\rightarrow \sqrt{\kappa} \gg 10$, quasistable strings

Monopoles with and without unconfined magnetic flux:

Monopole pair production

$$
\begin{align*}
& \text { Decay rate per string length: } \\
& \text { [Vilenkin: Nucl. Phys. B 196 (1982) 240] } \\
& \text { (Preskill, Vilenkin: hepph/9209210] } \\
& \text { [Monin, Voloshin: 0808.1693] } \\
& \qquad \Gamma_{d}=\frac{d \#}{d t d \ell}=\frac{\mu}{2 \pi} e^{-\pi \kappa}, \quad \kappa=\frac{m^{2}}{\mu} \tag{1}
\end{align*}
$$

- String tension μ, monopole mass m
- Strings are not topologically stable, decay on cosmological times scales
- Dynamics around the GUT scale $\rightarrow \sqrt{\kappa} \sim 1 \cdots 10$, metastable strings
- Dynamics around intermediate scale $\rightarrow \sqrt{\kappa} \gg 10$, quasistable strings

Monopoles with and without unconfined magnetic flux:

- Unconfined flux: $M \bar{M}$ annihilation, emission of massless gauge bosons

Monopole pair production

$$
\begin{align*}
& \text { Decay rate per string length: } \\
& \text { [Vilenkin: Nucl. Phys. B 196(1922) 240] } \\
& \text { (Preskill, Vilenkin: hepp-ph/9209210] } \\
& \text { [Monin, Voloshin: 0808.1693] } \\
& \qquad \Gamma_{d}=\frac{d \#}{d t d \ell}=\frac{\mu}{2 \pi} e^{-\pi \kappa}, \quad \kappa=\frac{m^{2}}{\mu} \tag{1}
\end{align*}
$$

- String tension μ, monopole mass m
- Strings are not topologically stable, decay on cosmological times scales
- Dynamics around the GUT scale $\rightarrow \sqrt{\kappa} \sim 1 \cdots 10$, metastable strings
- Dynamics around intermediate scale $\rightarrow \sqrt{\kappa} \gg 10$, quasistable strings

Monopoles with and without unconfined magnetic flux:

- Unconfined flux: $M \bar{M}$ annihilation, emission of massless gauge bosons
- No unconfined flux: energy loss only via emission of gravitational waves

Possible scenarios

$$
\begin{equation*}
W_{B-L}=\lambda T\left(S \bar{S}-\frac{1}{2} v_{B-L}^{2}\right)+\frac{h_{i}}{M_{*}} S^{2} N_{i}^{2} \tag{2}
\end{equation*}
$$

$B-L$ phase transition after
supersymmetric hybrid inflation:

- T: inflaton, S, \bar{S} : Higgs / waterfall fields, N_{i} : right-handed neutrinos

Possible scenarios

$$
\begin{equation*}
W_{B-L}=\lambda T\left(S \bar{S}-\frac{1}{2} v_{B-L}^{2}\right)+\frac{h_{i}}{M_{*}} S^{2} N_{i}^{2} \tag{2}
\end{equation*}
$$

$B-L$ phase transition after

supersymmetric hybrid inflation:

- T: inflaton, S, \bar{S} : Higgs / waterfall fields, N_{i} : right-handed neutrinos
- $[S]_{B-L}=-1 \rightarrow$ no matter parity at low energies \rightarrow metastable strings

Possible scenarios

$$
\begin{equation*}
W_{B-L}=\lambda T\left(S \bar{S}-\frac{1}{2} v_{B-L}^{2}\right)+\frac{h_{i}}{M_{*}} S^{2} N_{i}^{2} \tag{2}
\end{equation*}
$$

[Buchmüller, Domcke, Murayama, KS: 1912.03695]

$B-L$ phase transition after supersymmetric hybrid inflation:

- T: inflaton, S, \bar{S} : Higgs / waterfall fields, N_{i} : right-handed neutrinos
- $[S]_{B-L}=-1 \rightarrow$ no matter parity at low energies \rightarrow metastable strings
$v_{B-L} \sim(3 \cdots 6) \times 10^{15} \mathrm{GeV}$
[Buchmüller, KS, Vertongen: 1008.2355, 1104.2750]
[Buchmüller, Domcke, KS: 1111.3872, 1202.6679, 1203.0285]
[Buchmüller, Domcke, Kamada, KS: 1305.3392, 1309.7788]

Possible scenarios

$$
\begin{equation*}
W_{B-L}=\lambda T\left(S \bar{S}-\frac{1}{2} v_{B-L}^{2}\right)+\frac{h_{i}}{M_{*}} S^{2} N_{i}^{2} \tag{2}
\end{equation*}
$$

[Buchmüller, Domcke, Murayama, KS: 1912.03695]

$B-L$ phase transition after supersymmetric hybrid inflation:

- T: inflaton, S, \bar{S} : Higgs / waterfall fields, N_{i} : right-handed neutrinos
- $[S]_{B-L}=-1 \rightarrow$ no matter parity at low energies \rightarrow metastable strings
$v_{B-L} \sim(3 \cdots 6) \times 10^{15} \mathrm{GeV}$
[Buchmüller, KS, Vertongen: 1008.2355, 1104.2750]
[Buchmüller, Domcke, KS: 1111.3872, 1202.6679, 1203.0285]
[Buchmüller, Domcke, Kamada, KS: 1305.3392, 1309.7788]
$\underset{\text { MBuchnuiler: 2102.09923] }}{\text { Minimal alternative: } S U(2) \times U(1) \xrightarrow{\text { triplet }} U(1) \times U(1) \xrightarrow{\text { doublets }} U(1), ~(1) ~}$

Strategy

End of scaling when long string segments begin to enter the horizon:
[Leblond, Shlaer, Siemens: 0903.4686]

$$
\begin{equation*}
\Gamma_{d} \ell t_{s} \sim \Gamma_{d} H^{-1} t_{s} \sim \Gamma_{d} t_{s}^{2} \sim 1 \quad \Rightarrow \quad t_{s} \sim \frac{1}{\sqrt{\Gamma_{d}}} \tag{3}
\end{equation*}
$$

Scaling regime, $t<t_{s}$

- Loops: emit GWs, decay into segments negligible
- Long strings: decay into segments on superhorizon scales, chop off closed loops, GW emission negligible

Strategy

End of scaling when long string segments begin to enter the horizon:
[Leblond, Shlaer, Siemens: 0903.4686]

$$
\begin{equation*}
\Gamma_{d} \ell t_{s} \sim \Gamma_{d} H^{-1} t_{s} \sim \Gamma_{d} t_{s}^{2} \sim 1 \quad \Rightarrow \quad t_{s} \sim \frac{1}{\sqrt{\Gamma_{d}}} \tag{3}
\end{equation*}
$$

Scaling regime, $t<t_{s}$

- Loops: emit GWs, decay into segments negligible
- Long strings: decay into segments on superhorizon scales, chop off closed loops, GW emission negligible

Decay regime, $t>t_{s}$

- Loops: emit GWs and decay into segments
- Segments from loops and long strings: emit GWs and decay into segments; no production of new loops

Formal description

Kinetic equation for the number densities of loops and segments, n and \tilde{n} :

$$
\begin{equation*}
\partial_{t} n(\ell, t)=S(\ell, t)-\partial_{\ell}[u(\ell, t) n(\ell, t)]-\left[3 H(t)+\Gamma_{d} \ell\right] n(\ell, t) \tag{4}
\end{equation*}
$$

Formal description

Kinetic equation for the number densities of loops and segments, n and \tilde{n} :

$$
\begin{equation*}
\partial_{t} n(\ell, t)=S(\ell, t)-\partial_{\ell}[u(\ell, t) n(\ell, t)]-\left[3 H(t)+\Gamma_{d} \ell\right] n(\ell, t) \tag{4}
\end{equation*}
$$

Source term S:

- Loops from long strings (loop production function): $S \propto t^{-4} \delta(\ell-\alpha t)$

Formal description

Kinetic equation for the number densities of loops and segments, n and \tilde{n} :

$$
\begin{equation*}
\partial_{t} n(\ell, t)=S(\ell, t)-\partial_{\ell}[u(\ell, t) n(\ell, t)]-\left[3 H(t)+\Gamma_{d} \ell\right] n(\ell, t) \tag{4}
\end{equation*}
$$

Source term S:

- Loops from long strings (loop production function): $S \propto t^{-4} \delta(\ell-\alpha t)$
- Loops during the decay regime: $S=0$

Formal description

Kinetic equation for the number densities of loops and segments, n and \tilde{n} :

$$
\begin{equation*}
\partial_{t} n(\ell, t)=S(\ell, t)-\partial_{\ell}[u(\ell, t) n(\ell, t)]-\left[3 H(t)+\Gamma_{d} \ell\right] n(\ell, t) \tag{4}
\end{equation*}
$$

Source term S:

- Loops from long strings (loop production function): $S \propto t^{-4} \delta(\ell-\alpha t)$
- Loops during the decay regime: $S=0$
- Segments from loops: $S=\Gamma_{d} \ell \AA(\ell, t)$

Formal description

Kinetic equation for the number densities of loops and segments, n and \tilde{n} :

$$
\begin{equation*}
\partial_{t} n(\ell, t)=S(\ell, t)-\partial_{\ell}[u(\ell, t) n(\ell, t)]-\left[3 H(t)+\Gamma_{d} \ell\right] n(\ell, t) \tag{4}
\end{equation*}
$$

Source term S:

- Loops from long strings (loop production function): $S \propto t^{-4} \delta(\ell-\alpha t)$
- Loops during the decay regime: $S=0$
- Segments from loops: $S=\Gamma_{d} \ell \AA(\ell, t)$
- Segments from segments: $S=2 \Gamma_{d} \int_{\ell}^{\infty} d \ell^{\prime} \tilde{n}\left(\ell^{\prime}, t\right)$

Formal description

Kinetic equation for the number densities of loops and segments, n and \tilde{n} :

$$
\begin{equation*}
\partial_{t} n(\ell, t)=S(\ell, t)-\partial_{\ell}[u(\ell, t) n(\ell, t)]-\left[3 H(t)+\Gamma_{d} \ell\right] n(\ell, t) \tag{4}
\end{equation*}
$$

Source term S:

- Loops from long strings (loop production function): $S \propto t^{-4} \delta(\ell-\alpha t)$
- Loops during the decay regime: $S=0$
- Segments from loops: $S=\Gamma_{d} \ell \AA(\ell, t)$
- Segments from segments: $S=2 \Gamma_{d} \int_{\ell}^{\infty} d \ell^{\prime} \tilde{n}\left(\ell^{\prime}, t\right)$

Time derivative of the string length $u=\dot{\ell}$:

- Long strings during scaling: $u=3 H(t) \ell-2 \ell / t$

Formal description

Kinetic equation for the number densities of loops and segments, n and \tilde{n} :

$$
\begin{equation*}
\partial_{t} n(\ell, t)=S(\ell, t)-\partial_{\ell}[u(\ell, t) n(\ell, t)]-\left[3 H(t)+\Gamma_{d} \ell\right] n(\ell, t) \tag{4}
\end{equation*}
$$

Source term S:

- Loops from long strings (loop production function): $S \propto t^{-4} \delta(\ell-\alpha t)$
- Loops during the decay regime: $S=0$
- Segments from loops: $S=\Gamma_{d} \ell \cap(\ell, t)$
- Segments from segments: $S=2 \Gamma_{d} \int_{\ell}^{\infty} d \ell^{\prime} \tilde{n}\left(\ell^{\prime}, t\right)$

Time derivative of the string length $u=\dot{\ell}$:

- Long strings during scaling: $u=3 H(t) \ell-2 \ell / t$
- Loops and segments when radiating off GWs: $u=-\Gamma G \mu,-\Gamma \tilde{G} \mu$

Formal description

Kinetic equation for the number densities of loops and segments, n and \tilde{n} :

$$
\begin{equation*}
\partial_{t} n(\ell, t)=S(\ell, t)-\partial_{\ell}[u(\ell, t) n(\ell, t)]-\left[3 H(t)+\Gamma_{d} \ell\right] n(\ell, t) \tag{4}
\end{equation*}
$$

Source term S:

- Loops from long strings (loop production function): $S \propto t^{-4} \delta(\ell-\alpha t)$
- Loops during the decay regime: $S=0$
- Segments from loops: $S=\Gamma_{d} \ell \cap(\ell, t)$
- Segments from segments: $S=2 \Gamma_{d} \int_{\ell}^{\infty} d \ell^{\prime} \tilde{n}\left(\ell^{\prime}, t\right)$

Time derivative of the string length $u=\dot{\ell}$:

- Long strings during scaling: $u=3 H(t) \ell-2 \ell / t$
- Loops and segments when radiating off GWs: $u=-\Gamma G \mu,-\Gamma \tilde{} G \mu$

Challenge: Solve set of partial integro-differential equations in both the scaling and decay regimes, match solutions at $t=t_{s}$. (Plus, RD / MD.)

Number densities

Loop number density during the decay regime in the radiation era:
[Cf. Blanco-Pillado, Olum, Shlaer: 1309.6637] [Cf. Blanco-Pillado, Olum: 1709.02693] [See also talk by Jose Juan today]

Number densities

Loop number density during the decay regime in the radiation era:
[Cf. Blanco-Pillado, Olum, Shlaer: 1309.6637] [Cf. Blanco-Pillado, Olum: 1709.02693] [See also talk by Jose Juan today]

$$
\begin{equation*}
\stackrel{\left.\stackrel{\mathrm{rrr}}{n_{>}}(\ell, t)=\frac{B e^{-\Gamma_{d}\left[\ell\left(t-t_{s}\right)+1 / 2 \Gamma G \mu\left(t-t_{s}\right)^{2}\right]}}{t^{3 / 2}(\ell+\Gamma G \mu t)^{5 / 2}} \Theta\left(\alpha t_{s}-\bar{\ell}\left(t_{s}\right)\right) \Theta\left(t_{\mathrm{eq}}-t\right), ~\right) .}{ } \tag{5}
\end{equation*}
$$

- Exponential suppression at $\ell t>1 / \Gamma_{d}=t_{s}^{2}$ or $t^{2}>2 /\left(\Gamma_{d} \Gamma G \mu\right)=t_{e}^{2}$ because of new exponential suppression factor:

$$
\begin{equation*}
\Gamma_{d} \int_{t_{s}}^{t} d t^{\prime}\left[\ell+\Gamma G \mu\left(t^{\prime}-t_{s}\right)\right]=\Gamma_{d}\langle\ell\rangle\left(t-t_{s}\right) \tag{6}
\end{equation*}
$$

Number densities

Loop number density during the decay regime in the radiation era:
[Cf. Blanco-Pillado, Olum, Shlaer: 1309.6637] [Cf. Blanco-Pillado, Olum: 1709.02693] [See also talk by Jose Juan today]

$$
\begin{equation*}
\stackrel{\stackrel{\mathrm{rrr}}{n_{>}}}{>}(\ell, t)=\frac{B e^{-\Gamma_{d}\left[\ell\left(t-t_{s}\right)+1 / 2 \Gamma G \mu\left(t-t_{s}\right)^{2}\right]}}{t^{3 / 2}(\ell+\Gamma G \mu t)^{5 / 2}} \Theta\left(\alpha t_{s}-\bar{\ell}\left(t_{s}\right)\right) \Theta\left(t_{\mathrm{eq}}-t\right) \tag{5}
\end{equation*}
$$

- Exponential suppression at $\ell t>1 / \Gamma_{d}=t_{s}^{2}$ or $t^{2}>2 /\left(\Gamma_{d} \Gamma G \mu\right)=t_{e}^{2}$ because of new exponential suppression factor:

$$
\begin{equation*}
\Gamma_{d} \int_{t_{s}}^{t} d t^{\prime}\left[\ell+\Gamma G \mu\left(t^{\prime}-t_{s}\right)\right]=\Gamma_{d}\langle\ell\rangle\left(t-t_{s}\right) \tag{6}
\end{equation*}
$$

- Time-resolved picture of loop decay in dependence of ℓ and t

Number densities

Loop number density during the decay regime in the radiation era:
[Cf. Blanco-Pillado, Olum, Shlaer: 1309.6637] [Cf. Blanco-Pillado, Olum: 1709.02693] [See also talk by Jose Juan today]

$$
\begin{equation*}
\stackrel{\stackrel{\mathrm{orr}}{n_{>}}}{>}(\ell, t)=\frac{B e^{-\Gamma_{d}\left[\ell\left(t-t_{s}\right)+1 / 2 \Gamma G \mu\left(t-t_{s}\right)^{2}\right]}}{t^{3 / 2}(\ell+\Gamma G \mu t)^{5 / 2}} \Theta\left(\alpha t_{s}-\bar{\ell}\left(t_{s}\right)\right) \Theta\left(t_{\mathrm{eq}}-t\right) \tag{5}
\end{equation*}
$$

- Exponential suppression at $\ell t>1 / \Gamma_{d}=t_{s}^{2}$ or $t^{2}>2 /\left(\Gamma_{d} \Gamma G \mu\right)=t_{e}^{2}$ because of new exponential suppression factor:

$$
\begin{equation*}
\Gamma_{d} \int_{t_{s}}^{t} d t^{\prime}\left[\ell+\Gamma G \mu\left(t^{\prime}-t_{s}\right)\right]=\Gamma_{d}\langle\ell\rangle\left(t-t_{s}\right) \tag{6}
\end{equation*}
$$

- Time-resolved picture of loop decay in dependence of ℓ and t
 $\tilde{n}_{>}^{(s) \mathrm{mm}}, \tilde{n}_{>}^{(1) \mathrm{rr}}, \tilde{n}_{>}^{(1) \mathrm{rm}}, \tilde{n}_{>}^{(1) \mathrm{mm}}$. The integro-differential equation for $\tilde{n}_{>}^{(1)}$ is solved by an infinite series that needs be evaluated order by order.

Spectrum

Compute GW spectrum following the standard procedure:

$$
\begin{equation*}
\Omega_{\mathrm{gw}}(f)=\frac{G \mu^{2}}{\rho_{\text {crit }}} \sum_{k} P_{k} \frac{2 k}{f} \int_{t_{\mathrm{ini}}}^{t_{0}} d t\left[\frac{a(t)}{a\left(t_{0}\right)}\right]^{5} n\left(\frac{a(t)}{a\left(t_{0}\right)} \frac{2 k}{f}, t\right) \tag{7}
\end{equation*}
$$

Spectrum

Compute GW spectrum following the standard procedure:

$$
\begin{equation*}
\Omega_{\mathrm{gw}}(f)=\frac{G \mu^{2}}{\rho_{\text {crit }}} \sum_{k} P_{k} \frac{2 k}{f} \int_{t_{\mathrm{ini}}}^{t_{0}} d t\left[\frac{a(t)}{a\left(t_{0}\right)}\right]^{5} n\left(\frac{a(t)}{a\left(t_{0}\right)} \frac{2 k}{f}, t\right) \tag{7}
\end{equation*}
$$

Spectrum

Compute GW spectrum following the standard procedure:

$$
\begin{equation*}
\Omega_{\mathrm{gw}}(f)=\frac{G \mu^{2}}{\rho_{\text {crit }}} \sum_{k} P_{k} \frac{2 k}{f} \int_{t_{\mathrm{ini}}}^{t_{0}} d t\left[\frac{a(t)}{a\left(t_{0}\right)}\right]^{5} n\left(\frac{a(t)}{a\left(t_{0}\right)} \frac{2 k}{f}, t\right) \tag{7}
\end{equation*}
$$

- Loop contribution almost always dominant [cf. Leblond, Shlaer, Siemens: 0903.4686]

Spectrum

Compute GW spectrum following the standard procedure:

$$
\begin{equation*}
\Omega_{\mathrm{gw}}(f)=\frac{G \mu^{2}}{\rho_{\text {crit }}} \sum_{k} P_{k} \frac{2 k}{f} \int_{t_{\mathrm{ini}}}^{t_{0}} d t\left[\frac{a(t)}{a\left(t_{0}\right)}\right]^{5} n\left(\frac{a(t)}{a\left(t_{0}\right)} \frac{2 k}{f}, t\right) \tag{7}
\end{equation*}
$$

- Loop contribution almost always dominant [cf. Leblond, Shaer, Siemens: 0003.4686]
- Loop contributions scales like f^{2} at low f [cf. Buchuiler, Domcce, Murayama, Ks: 1912.03695]

Spectrum

Compute GW spectrum following the standard procedure:

$$
\begin{equation*}
\Omega_{\mathrm{gw}}(f)=\frac{G \mu^{2}}{\rho_{\text {crit }}} \sum_{k} P_{k} \frac{2 k}{f} \int_{t_{\mathrm{ini}}}^{t_{0}} d t\left[\frac{a(t)}{a\left(t_{0}\right)}\right]^{5} n\left(\frac{a(t)}{a\left(t_{0}\right)} \frac{2 k}{f}, t\right) \tag{7}
\end{equation*}
$$

- Loop contribution almost always dominant [cf. Leelond, Shaer, Siemens: 0003.4686]
- Loop contributions scales like f^{2} at low f [cf. Buchmiller, Domcce, Murayama, ks: 1912.03695]
- Suppress spectrum in nHz range, explain NANOGrav for larger $G \mu$

Observational prospects

Extrapolate spectrum to large f and compare with LIGO, Virgo, KAGRA:

Observational prospects

Extrapolate spectrum to large f and compare with LIGO, Virgo, KAGRA:

- Current LIGO bound depends on prior assumptions [LVk Colaboration: 2101.12130]

Observational prospects

Extrapolate spectrum to large f and compare with LIGO, Virgo, KAGRA:

- Current LIGO bound depends on prior assumptions [Lvk collaboration: 2101.12130]
- Close to prediction of supersymmetric $B-L$ model $\left(G \mu \gtrsim 10^{-7}\right)$

Observational prospects

Extrapolate spectrum to large f and compare with LIGO, Virgo, KAGRA:

- Current LIGO bound depends on prior assumptions [LVk colaboration: 2101.12130]
- Close to prediction of supersymmetric $B-L$ model $\left(G \mu \gtrsim 10^{-7}\right)$
- Tilt at PTA frequencies correlated with amplitude at LVK frequencies

Observational prospects

Extrapolate spectrum to large f and compare with LIGO, Virgo, KAGRA:

- Current LIGO bound depends on prior assumptions [Lvk collaboration: 2101.12130]
- Close to prediction of supersymmetric $B-L$ model $\left(G \mu \gtrsim 10^{-7}\right)$
- Tilt at PTA frequencies correlated with amplitude at LVK frequencies
- LISA will probe the entire parameter space consistent with NANOGrav

Conclusions and outlook

Metastable cosmic strings:

- Prediction in many GUT models when combined with inflation to solve the monopole problem

Conclusions and outlook

Metastable cosmic strings:

- Prediction in many GUT models when combined with inflation to solve the monopole problem
- Exciting predictions for future PTA and interferometer experiments

Conclusions and outlook

Metastable cosmic strings:

- Prediction in many GUT models when combined with inflation to solve the monopole problem
- Exciting predictions for future PTA and interferometer experiments

Next steps:

- Explore other directions in parameter space: $\alpha, \Gamma, \tilde{\Gamma}, \ldots$

Conclusions and outlook

Metastable cosmic strings:

- Prediction in many GUT models when combined with inflation to solve the monopole problem
- Exciting predictions for future PTA and interferometer experiments

Next steps:

- Explore other directions in parameter space: $\alpha, \Gamma, \tilde{\Gamma}, \ldots$
- Numerically simulate the dynamics of a metastable string network

Conclusions and outlook

Metastable cosmic strings:

- Prediction in many GUT models when combined with inflation to solve the monopole problem
- Exciting predictions for future PTA and interferometer experiments

Next steps:

- Explore other directions in parameter space: $\alpha, \Gamma, \tilde{\Gamma}, \ldots$
- Numerically simulate the dynamics of a metastable string network
- Other observables: $M \bar{M}$ annihilation, CMB spectral distortions, etc.?

Conclusions and outlook

Metastable cosmic strings:

- Prediction in many GUT models when combined with inflation to solve the monopole problem
- Exciting predictions for future PTA and interferometer experiments

Next steps:

- Explore other directions in parameter space: $\alpha, \Gamma, \tilde{\Gamma}, \ldots$
- Numerically simulate the dynamics of a metastable string network
- Other observables: $M \bar{M}$ annihilation, CMB spectral distortions, etc.?

Thank you very much for your attention!

