Model-independent energy budget of gravitational waves from a cosmological first-order phase transition

> Gravitational Wave Probes of Physics Beyond Standard Model

Jorinde van

de Vis

F. Giese, T. Konstandin, JvdV, **2004.06995** *JCAP* 07 (2020) 07, 057

F. Giese, T. Konstandin, K. Schmitz, JvdV, **2010.09744** JCAP 01 (2021), 072

First order phase transition: Colliding bubbles of true vacuum

Broken phase $< \varphi > \neq 0$ SM particles massive

Symmetric phase $< \phi > = 0$ SM particles massless

3 sources of gravitational waves

- Scalar field contribution
- Sound waves
- Turbulence

How to predict gravitational wave signal in sound waves?

- $\Omega_{tot} = \min \{1, H_*\tau_{sh}\} 3F \tilde{\Omega} R_* H_* K^2$
- F : Redshift
- H_* : Hubble parameter at percolation
- R_* : mean bubble separation

M. Hindmarsh, S. Huber, K. Rummukainen, D.Weir 2015, 2017 LISA Cosmology working group 2015, 2019

> Particle physics at finite T Bubble wall velocity

How to predict gravitational wave signal in sound waves?

• $\Omega_{tot} = \min\{1, H_*\tau_{sh}\} 3F\tilde{\Omega}R_*H_*K^2$

M. Hindmarsh, S. Huber, K. Rummukainen, D.Weir 2015, 2017 LISA Cosmology working group 2015, 2019

- $\tilde{\Omega}$: Numerical factor ~ 0.01
- $\tau_{\rm sh}$: Onset of shock formation ~ $\sqrt{K/\Gamma}$
- K : Kinetic energy fraction

- Determined by hydrodynamics of single expanding bubble
- Depends on the phase transition strength and speed of sound in the plasma
- Depends on bubble wall velocity which is treated as external parameter

Goal

Determine *K* as a function of the phase transition strength, wall velocity and the speed of sound, without further model-dependence

Goal

Determine *K* as a function of the phase transition strength, wall velocity and the speed of sound, without further model-dependence

> Result should be reusable without solving the hydrodynamics

Hydrodynamics of a single bubble

enthalpy

pressure

- Plasma is described by a perfect fluid: $T_{\mu\nu} = w u_{\mu} u_{\nu} p g_{\mu\nu}$
- Hydrodynamic equations from continuity equations: $\partial_{\mu}T^{\mu\nu} = 0$
- Matching equations:

$$v_{+}v_{-} = \frac{p_{+} - p_{-}}{e_{+} - e_{-}}, \qquad \frac{v_{+}}{v_{-}} = \frac{e_{-} + p_{+}}{e_{+} + p_{-}}$$

energy density

detonation

Velocity and enthalpy profile

J. Espinosa, T. Konstandin, J. No, G. Servant, 2010

Bag equation of state

J. Espinosa, T. Konstandin, J. No, G. Servant, 2010

Generalization to other models

• Compute phase transition strength α_n and use fit for bag equation of state from **J. Espinosa, T. Konstandin, J. No, G. Servant, 2010**

• But how to compute α_n in a different model? And where is the sound speed dependence?

Generalization to other models

• Only T_n is known

$$\alpha_p = -\frac{4Dp}{3w_s(T_n)} \qquad \qquad \alpha_e = \frac{4De}{3w_s(T_n)}$$

$$DX \equiv X_s(T_n) - X_b(T_n)$$

•
$$\alpha_{\theta} = \frac{D\theta}{3w_s(T_n)}$$
 $\theta \equiv e - 3p$

The speed of sound never enters

Model-dependence in hydrodynamics

Hydrodynamic equations

$$2\frac{v}{\xi} = \gamma^2 (1 - v\xi) \left[\frac{\mu^2}{c_s^2} - 1 \right] \partial_{\xi} v, \qquad \qquad \frac{\partial_v w}{w} = \left(\frac{1}{c_s^2} + 1 \right) \gamma^2 \mu$$

- Boundary conditions
 - $w(T_n) = w_n$

•
$$\frac{v_+}{v_-} = \frac{e_b(T_-) + p_s(T_+)}{e_s(T_+) + p_b(T_-)}, \qquad v_+v_- = \frac{p_s(T_+) - p_b(T_-)}{e_s(T_+) - e_b(T_-)}$$

Velocity matching

•
$$\frac{v_+}{v_-} = \frac{e_b(T_-) + p_s(T_+)}{e_s(T_+) + p_b(T_-)}, \qquad v_+v_- = \frac{p_s(T_+) - p_b(T_-)}{e_s(T_+) - e_b(T_-)}$$

• We assume that $T_+ \simeq T_-$.

•
$$\frac{v_+}{v_-} \simeq \frac{(v_+ v_- / c_{s,b}^2 - 1) + 3\alpha_{\bar{\theta}}}{(v_+ v_- / c_{s,b}^2 - 1) + 3v_+ v_- \alpha_{\bar{\theta}}}$$
, either v_+ or v_- is known

$$\bar{\theta} \equiv e - \frac{p}{c_{s,b}^2} \qquad \alpha_{\bar{\theta}} \equiv \frac{D\bar{\theta}}{3w_n}$$

Capture the model dependence in small number of parameters

• Model dependent parameters: $\alpha_{\bar{\theta}}$, $c_{s,broken}$, $c_{s,symm}$ + wall velocity ξ_w

• Can determine
$$\kappa_{\bar{\theta}} = \frac{4\rho_{fl}}{D\bar{\theta}} = \frac{4\rho_{fl}}{3\alpha_{\bar{\theta}}w_n}$$

• $K = \frac{D\bar{\theta}}{4e_n} \kappa_{\bar{\theta}}$ can now easily be obtained (but depends on the model)

Capture the model dependence in small number of parameters

• Model dependent parameters: $\alpha_{\bar{\theta}}$, $c_{s,broken}$, $c_{s,symm}$ + wall velocity ξ_w

• Can determine
$$\kappa_{\bar{\theta}} = \frac{4\rho_{fl}}{D\bar{\theta}} = \frac{4\rho_{fl}}{3\alpha_{\bar{\theta}}w_n}$$

• $K = \frac{D\bar{\theta}}{4e_n} \kappa_{\bar{\theta}}$ can now easily be obtained (but depends on the model)

• Tricky detail: $\alpha_{\bar{\theta}}$ is defined at T_n , which is not T_+ for hybrids and deflagrations -> need shooting algorithm.

Quick recap

• We want to find a model-independent expression/fit for $K = \frac{\rho_{fl}}{e_n}$

• We introduced
$$\bar{\theta} \equiv e - \frac{p}{c_s^2}$$
 $\alpha_{\bar{\theta}} \equiv \frac{D\theta}{3w_n}$

- The velocity profile and $\kappa_{\bar{\theta}}$ only depend on $\alpha_{\bar{\theta}}$, $c_{s,\text{broken}}$, $c_{s,\text{symm}}$ and ξ_w
- K can easily be determined from $\kappa_{\bar{ heta}}$

Make the result reusable

Template model with varying speed of sound

•
$$\alpha_{\bar{\theta}} = \frac{1}{3} \left(1 - \frac{\nu}{\mu} + \frac{3\epsilon\nu}{a_{+}\mu T_{n}^{\mu}} \right) \qquad \frac{\nu_{+}}{\nu_{-}} \stackrel{\downarrow}{=} \frac{\nu_{+}\nu_{-}(\nu-1) - 1 + 3\alpha_{\bar{\theta}}}{\nu_{+}\nu_{-}(\nu-1) - 1 + 3\nu_{+}\nu_{-}\alpha_{\bar{\theta}}}$$

Python snippet computes $\kappa_{\bar{\theta}}$

2010.09744

. . .

Compute $\alpha_{\overline{\theta}}$, both c_s s and choose ξ_w

```
2
   from scipy.integrate import odeint
    from scipy.integrate import simps
 3
 4
 5
    def mu(a,b):
 6
     return (a-b)/(1.-a*b)
 7
 8
    def getwow(a,b):
 9
      return a/(1.-a**2)/b*(1.-b**2)
10
    def getvm(al,vw,cs2b):
11
12
     if vw**2<cs2b:
        return (vw,0)
13
14
     cc = 1.-3.*al+vw**2*(1./cs2b+3.*al)
     disc = -4.*vw**2/cs2b+cc**2
15
16
     if (disc<0.) | (cc<0.):
        return (np.sqrt(cs2b), 1)
17
18
     return ((cc+np.sqrt(disc))/2.*cs2b/vw, 2)
19
20
    def dfdv(xiw, v, cs2):
```

```
K = \frac{D\bar{\theta}}{4e_n} \kappa_{\bar{\theta}}
```

 $\mathcal{K}_{\bar{\theta}}$

Jorinde van de Vis

```
76 Krf*= -wow*getwow(vp,vm)
77 else:
78 Krf = 0
79 return (Ksh + Krf)/al
```

import numpy as np

1

Comparison of methods to compute *K*

Full hydrodynamics

Comparison of methods to compute *K*

New approach

Comparison of methods to compute *K*

M1KM2 $\kappa_{\bar{\theta}}(\alpha_{\bar{\theta}}, c_s)|_{\nu}$ $4e_{\pm}$ $D\theta$ M3 $\kappa_{\epsilon}(\alpha_{\theta})$ $4e_{\perp}$ α_{θ} M4 $\kappa_{\epsilon}(\alpha_{\theta})$ $\alpha_{\theta} + 1$ α_p M5 $\kappa_{\epsilon}(\alpha_p)$ $\alpha_p + 1$ $\frac{\alpha_e}{\alpha_e+1}$ $\kappa_{\epsilon}(\alpha_{e})$ M6

Methods used in the literature. Mapping onto bag equation of state.

Two toy models

SM-like

$$F(\phi, T) = -\frac{a_{+}}{3}T^{4} + \lambda(\phi^{4} - 2E\phi^{3}T + \phi^{2}(E^{2}T_{cr}^{2} + c(T^{2} - T_{cr}^{2}))) + \frac{\lambda}{4}(c - E^{2})^{2}T_{cr}^{4}$$

with $p_{s} = -F(0,T)$ and $p_{b} = -F(\phi_{min},T)$

• Two-step

$$p_s(T) = \frac{1}{3}a_+T^4 + (b_+ - c_+T^2)^2 - b_-^2, \qquad p_b(T) = \frac{1}{3}a_+T^4 + (b_- - c_-T^2)^2 - b_-^2$$

Model	$3\lambda/a_+$	E	c	$T_+/T_{\rm cr}$	$\alpha_{ar{ heta}}$	c_s^2
SM ₁	10	0.3	0.2	0.9	0.0297	0.326
SM_2	10	0.3	0.2	0.8	0.0498	0.331
SM_3	3	0.3	0.2	0.9	0.00887	0.331
SM_4	3	0.3	0.2	0.8	0.0149	0.333

Model	$b_{-}/(\sqrt{a_{+}}T_{\rm cr}^{2})$	$c/\sqrt{a_+}$	$c_+/\sqrt{a_+}$	$T_+/T_{\rm cr}$	$\alpha_{\bar{\theta}}$	c_s^2
2step_1	$0.4/\sqrt{3}$	$0.2/\sqrt{3}$	$0.1/\sqrt{3}$	0.9	0.0156	0.312
2step_2	$0.4/\sqrt{3}$	$0.2/\sqrt{3}$	$0.1/\sqrt{3}$	0.7	0.0704	0.297
$2 \operatorname{step}_3$	$0.5/\sqrt{3}$	$0.4/\sqrt{3}$	$0.2/\sqrt{3}$	0.9	0.0254	0.282
$2 \operatorname{step}_4$	$0.5/\sqrt{3}$	$0.4/\sqrt{3}$	$0.2/\sqrt{3}$	0.7	0.159	0.245

6 Methods to compute K

Relative deviation from M_1

Summary

- Gravitational waves are a promising test of cosmological phase transitions
- $\alpha_{\bar{\theta}}$, c_s and ξ_w : model-independent parameterization of the hydrodynamics
- α_p and α_e give a very bad estimate of K
- Matching onto the template model gives most accurate approximation of K

