Bridging the μ Hz gap with asteroids

Gravitational Wave Probes of Physics Beyond Standard Model

Remote presentation

July 15, 2021

M.F., P.W. Graham, and S. Rajendran. *Forthcoming* (2021). [210x.yyyy]. M.F., P.W. Graham, and S. Rajendran. Phys. Rev. D 103, 103017 (2021) [2011.13833].

Michael A. Fedderke

mfedderke@jhu.edu

GW Detection Landscape

Strong science case for broad coverage!

Existing / proposed facilities provide good coverage.

But there is a gap...

The "µHz Gap"

Many interesting sources in the "gap":

- Galactic binary black holes (BHBs)
- Cosmologically distant supermassive binary black holes (SMBHBs)
- $10M_{\odot}$ spiralling into SgrA*
- Intermediate mass ratio inspires (IMRIs)

Some observational studies and approaches exist:

- μ Ares (LISA-style: bigger and better TM)
- Astrometric techniques

Singularly hard to build detectors in this band!

Why?

The µAres detection landscape

3 Michael A. Fedderke (JHU)

Local-TM—based GW Detection 101

- Measure light travel time (= proper distance) between test masses (TM)
- Emitter (A) sends pulse at $t_A = t_0$; receiver (B) gets pulse at $t_B = t_0 + \Delta t$:

$$\Delta t = L_0 \left(1 - \frac{h_0}{2} \operatorname{sinc}(\omega_{gw} L_0/2) \cos[\omega_{gw}(t_0 + L_0/2)] \right) + \mathcal{O}(h_0^2)$$
$$\longrightarrow L_0 \left(1 - \frac{h_0}{2} \cos[\omega_{gw} t_0] \right) + \mathcal{O}(h_0^2) \qquad [\omega_{gw} L_0 \ll h_0^2]$$

• Effective baseline-projected Newtonian acceleration a_I :

$$a \sim \frac{1}{2} h_0 \omega_{\rm GW}^2 L_0 \cos[\omega_{\rm GW} t_0]$$

Sensitivity and Dominant Noise (local-TM)

Characteristic Strain

 h_c

- Pulsars are excellent TM (very massive) and clocks (excellent rotational stability)
- Measure pulse arrival times for many pulsars for > decade ullet
- Timing residuals shift if GW passes (through Earth; pulsar terms average out)
- Lose sensitivity in the μ Hz band: limited timing residuals (~ 10ns), and \bullet observation cadence

Moore et al. Class. Quantum Grav. 32 055004 (2015).

0023 + 0923 0030 + 0451
030 + 0431 0340 + 4130
613 - 0200
636 + 5128
1043 + 3138 1740 ± 6620
931 - 1902
012 + 5307
024 - 0719
125 + 7819 453 + 1002
453 + 1902 455 - 3330
600 - 3053
614 - 2230
640 + 2224
643 - 1224
713+0747
738 ± 0333 741 ± 1351
744 - 1134
747 - 4036
832-0836
853+1303
855 ± 09 903 ± 0327
909 - 3744
910+1256
911+1347
918 - 0642
923 + 2313
937 + 21
944 + 0907 946 + 3417
953 + 29
010 - 1323
0.017 + 0.003
033 + 1734
2043 + 1711
2145 - 0750 214 + 3000
229 + 2643
234 + 0611
234 + 0944
302 + 4442
317 + 1439
322 + 2057

A Mission Concept

 μ Hz band difficult with existing approaches

A Mission Concept

Can we use natural massive TM, but do it so we can build the ranging link?

Rest of this talk: evaluate asteroids as the TM

Ranging: park base stations (clock + emitter/receiver) on good candidates and range by, e.g., radio or laser timing

cf. Lunar Laser Ranging (but no Earth-atmosphere to worry about!)

Base station: emitter/receiver atomic clock

Arizona

Candidates and missions

NASA JPL Small-Body Database

Asteroid	a [AU]	D [km]	T_rot [hrs]
433 Eros	1.46	16.8	5.3
1627 Ivar	1.86	9.1	4.8
2064 Thomsen	2.18	13.6	4.2
6618 Jimsimons	1.87	11.5	4.1

Mission	Destination	Activity	Key Years
NEAR-Shoemaker	433 Eros	orbiter / soft landing	2000/1
DAWN	Ceres, Vesta	orbiter	2010s
Hayabusa	25143 Itokawa	orbiter / landing / sample return	2005
Hayabusa2	162173 Ryugu	orbiter / hopping "rovers" / sample return	2018- (ongoing)
OSIRIS-REx	101955 Bennu	orbiter / sample return	2018-21
Rosetta	Comet 67P	orbiter / lander (Philae)	2014-16

 $\sim 3 \times 10^{-5} \,\mathrm{Hz}$

Hayabusa2 @ Ryugu

JAXA

NASA/Goddard/University of Arizona

Candi	Hayabusa2	2 @ Ryugu				
		NASA JPL	_ Small-Body Database	•		
Asteroid	a [AU]	D [km]	T_rot [hrs]			
433 Eros	1.46	16.8	5.3		51	
1627 Ivar	1.86	9.1	4.8	les "		
2064 Thomsen	2.18	13.6	andiaa		ngoir	JAXA
6618 Jimsimons	1.87	roio.	4.1	are are	OSIRIS-Rex @ Benr	nu a "ru
			- tero!			
Mission	Destination	Act	35	Key Years		
EAR-Shoemaker	433 Eros		oft landing	2000/1		
DAWN	Ceres, Vesta	orbiter		2010s		GAL DE
Hayabusa	25142 Ibl av5	orbiter / landing / sample return		2005		
Hayabusa2	16 S Hyugu	orbiter / hopping "rovers" / sample return		2018- (ongoing)		A Star
OSIRIS-REx	101955 Bennu	orbiter / sample return		2018-21		
Rosetta	Comet 67P	orbiter / lar	nder (Philae)	2014-16		
			8			

Noise sources

- Solar intensity fluctuations
- Solar wind fluctuations
- Thermal cycling
- Noise at rotational period

- Clock noise
- Link (shot/thermal) noise
- etc...

• Gravitational pull of large bodies (planets, moons) - ephemeris and $G_N M_{obi}$ known

• GGN from other $\sim 10^6$ asteroids in Main Belt \leftarrow IM.F., P.W. Graham, and S. Rajendran. Phys. Rev. D 103, 103017 (2021) [2011.13833].

Seismics, charging, magnetic forces and torques, collisions, tidal deformation, etc.

... let's walk through (some of) these for an example asteroid

Solar intensity fluctuations

Solar radiation pressure gives CoM a DC acceleration

$$a \sim \frac{P_{\odot}}{c} \left(\frac{r_{\oplus}}{r}\right)^2 \frac{A_{\text{ast}}}{M_{\text{ast}}} \sim 10^{-14} \,\text{m/s}^2 \times \left(\frac{1.5 \text{AU}}{r}\right)^2 \times \left(\frac{8 \text{km}}{R_{\text{ast}}}\right) \times \left(\frac{2.5 \,\text{g/cm}^3}{\rho_{\text{ast}}}\right)^{-1}$$

... actually modulated at the rotation period, but this is high-frequency ($\sim 3 \times 10^{-5}$ Hz) for us. **BIG**, but out of band.

Actually care about the solar intensity fluctuations that are *in-band*:

$$\sqrt{S_a(f)} \sim \frac{\overline{P}_{\odot}}{c} \left(\frac{r_{\oplus}}{r}\right)^2 \frac{A_{\text{ast}}}{M_{\text{ast}}} \sqrt{S_{\hat{P}}(r)}$$
$$h_c \sim (2\pi f)^{-2} L^{-1} \sqrt{fS_a(f)}$$

MEASURED FRACTIONAL SOLAR PSD Fröhlich and Lean [Astron. Astrophys. Rev. 12 (2004) 273-320]

Existing or projected approaches in the μ Hz band

11 Michael A. Fedderke (JHU)

Solar intensity fluctuations

8km spherical asteroids at 1.5AU from the Sun, assuming fixed 1AU baseline (for argument)

12 Michael A. Fedderke (JHU)

13 Michael A. Fedderke (JHU)

Solar wind fluctuations

Similar estimate to the intensity fluctuations:

$$\sqrt{S_a(f)} \sim m_p \left(\frac{r_{\oplus}}{r}\right)^2 \frac{A_{\text{ast}}}{M_{\text{ast}}} \sqrt{S_{\Omega}}$$
$$\Omega = n_p v_p^2$$

Proton flux and speed monitored by the **CELIAS/MTOF** proton monitor on SOHO

Thermal cycling

Gigantic noise at rotation frequency, but out of band

Relevant estimate is from in-band surface temperature fluctuations arising from solar intensity fluctuation

Expansion from heating upper $d_{\rm th.} \sim 1 \,\mathrm{m} \times \sqrt{\mu \mathrm{Hz}/f}$

of the asteroid (rock estimate - conservative, since regolith is a blanket)

 $\Delta x \sim -\frac{1}{3} d_{\rm th.} k_{\rm th.} \Delta T$ $\Delta T \sim \frac{1}{4} \overline{T} \sqrt{f S_{\hat{P}}(f)}$

Severe noise at rotational period(s)

15 Michael A. Fedderke (JHU)

Asteroid GGN

Sum over $\sim 10^6$ other asteroids (in Main Belt, and some close-passers) give a noise for **all** local-TMbased proposals operating in the inner Solar System.

M.F., P.W. Graham, and S. Rajendran. Phys. Rev. D 103, 103017 (2021) [2011.13833].

> Note: also get cut off severely by uncontrolled relative motion of asteroids around orbital frequencies.

Many other acceleration noise sources estimated, and appear to be subdominant*

A word or two on seismic noise

- Severe problem for Earth-based GW detection
 - But Earth has a tectonic motion, a molten core, etc.
- Many reasons to be optimistic for asteroids:
 - Ancient, dead rock. No plate motion, no residual heat.
 - Pick asteroids that are ~ solid (i.e., not unstable rubble piles like 101955 Bennu)
 - There simply aren't resonant frequencies to excite in our band!
 - 433 Eros: lowest normal-mode frequency is ~10 mHz [Walker, Sagebiel, Huebner. Adv. Space Res. 37 (2006) 142–152]
 - Seismic measurements on the Moon and Mars typically have amplitudes of ~few nm (around ~Hz): $h \sim 10^{-20}$ for AU baselines
 - In-situ seismic / plastic deformation measurements should be made on asteroids prior to a full mission: e.g., seismometers; global optical relative-motion monitoring of, e.g., corner cubes deployed on surface
- <u>Strongly motivates inclusion of seismic experiments on future asteroid missions</u> (already motivated by internal structure studies [e.g., APEX mission concept])

Link Noise

Distance measurement by round-trip timing / "radar ranging"

Shot noise of laser pulsing link OR thermal noise from radio interferometric link.

Exemplar curves shown.

Asteroids are (obviously) **not** in formation flight. LISA-class optical heterodyne optical interferometry links would be hard, but can significantly relax optical system requirements!

*NOTE: WE HAVE NOT ACCESSED THE ENGINEERING CHALLENGES **OF BUILDING THESE LINKS!**

19 Michael A. Fedderke (JHU)

Projected Sensitivity Curves

Asteroids are excellent test masses for a GW detector in the μ Hz band

Laser/radio ranging between onasteroid base stations equipped with transmit/receive capability and atomic clocks gets excellent sensitivity

Further strongly motivates:

- in-situ seismic / plastic deformation monitoring of asteroids in upcoming missions
- space-qualifying atomic clocks

Thanks!

20 Michael A. Fedderke (JHU)

