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Outline

O Observational status of inflation after Planck 2013 & 2015 & 2018
O Assessing the theoretical status of inflation after Planck

0 Going beyond the present state of the art ... GW & PBHs from
“vanilla” inflationary models

O Conclusions.



B “Pa \

Outline

O Observational status of inflation after Planck 2013 & 2015 & 2018
O Assessing the theoretical status of inflation after Planck

0 Going beyond the present state of the art ... GW & PBHs from
“vanilla” inflationary models

O Conclusions.



] Observational status

- Universe spatially flat

- Phase coherence

D" [uk?]

_\l-pl'l'

- Adiabatic perturbations

- Gaussian perturbations

- Almost scale invariant power spectrum

- Background of quantum gravitational waves
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= Observational status /'@! X

- Universe spatially flat Q. =—0.01172012
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- Adiabatic perturbations a(2:2500 € [0.985, 0.999
- Gaussian perturbations Ilq‘f =0.84+5

- Almost scale invariant power spectrum ng = 0.9649 £ 0.0042
- Background of quantum gravitational waves r < 0.056

Single field slow-roll models, with minimal kinetic terms, are preferred
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[ Planck: and the winners are

Plateau inflationary models are the winners! ... examplified by
the Starobinsky model
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02} HI (Starobinsky model)
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J. Martin, C. Ringeval and V. Vennin, Phys. Dark Univ. 5-6 (2014) 75, arXiv:1303.3787
J. Martin, C. Ringeval, R. Trotta and V. Vennin, JCAP 1403 (2014) 039, arXiv1312.3529



ol Roheating

- The field oscillates, decays and the
decay products thermalize ..then the
radiation dominated era starts ...




B ieheating

- The field oscillates, decays and the
decay products thermalize ..then the
radiation dominated era starts ...

- Changing reheating duration moves
the observational window along the
inflaton potential
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M Reheating

- The field oscillates, decays and the
decay products thermalize ...then the
radiation dominated era starts ...

- Changing reheating duration moves
the observational window along the
inflaton potential

- Reheating can be very complicated (as
the process of re-ionization) but, as long
as the CMB is concerned, only the
reheating parameter is important
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J. Martin and C. Ringeval, Phys. Rev. D82

(2010) 023511, arXiv:1004.5525



gl Reheating N ey
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2.5
Kullback-Leibler [|Planck 2013

divergence

g
o

=
L

Information gain Dy, (in bits)
=
=]

Bayes factor B/B,

J. Martin, C. Ringeval and V. Vennin, Phys. Rev. Lett. 114 (2015) 8, 081303, arXiv:1410.7958



. Reheating : ,@i

strongly disfavored moderately disfavored weakly disfavored favored models
10
2.50) 4
Kullback-Leibler Planck 2015 + BICEP2/KECK
divergence
2 20 |
L
c
':é -10
15 |
£
m
o
c
o
-
2 1.0
£
2 [(Dy.) =0.82+093
0.5 i
0.0
107 102 10 10°

Bayes factor B/5,_,

J. Martin, C. Ringeval and V. Vennin, Phys. Rev. Lett. 114 (2015) 8, 081303, arXiv:1410.7958



| S e TR

Outline

O Observational status of inflation after Planck 2013 & 2015 & 2018
O Assessing the theoretical status of inflation after Planck

0 Going beyond the present state of the art ... GW & PBHs from
“vanilla” inflationary models

O Conclusions.



= Assessing inflation

- Inflationary mechanism (accelerated expansion) rests on GR which is a very
well-tested theory ...
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] Assessing inflation A@ b

- Inflationary mechanism (accelerated expansion) rests on GR which is a very
well-tested theory ...

- More precisely, it rests on the fundamental principle that, in GR, every form
of energy weighs including pressure
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Also at play in: - dark energy

- Neutron stars

- BBN
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- Assessing inflation /'xﬁ .,

- Inflationary mechanism (accelerated expansion) rests on GR which is a very
well-tested theory ...

- More precisely, it rests on the fundamental principle that, in GR, every form
of energy weighs including pressure
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S. Rappaport, J. Schwab, S. Burles, and
6. Steigman, Phys. Rev. D77, 023515
(2008), arXiv:0710.5300
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- Perturbations of quantum-meche e

This is similar o the Schwinger effect: interaction of a quantum field
with a classical source

J. Martin, Lect. Notes Phys. 738 (2008), 195
arXiv:0704.3540

Schwinger effect Inflationary cosmological perturbations
- Electron and positron fields - Inhomogeneous gravity field
- Classical electric field - Background gravitational field: scale factor
- Amplitude of the effect controlled - Amplitude controlled by the Hubble
by E parameter H

See also dynamical Schwinger effect, dynamical Casimir effect etc ...



= Future & Open issues for inf X

Theoretical open issues

- Model building & physical nature of the inflaton field:

- Has inflation some connections with the Higgs?

- Extensions to the standard model contains mainy degrees of freedom ...
how a single field description emerges from that?

- Can we observe the effect of these extra degrees of freedom (multi-
field inflation, gauge fields, inflationary magnetogenesis, PBHs etfc ...)

- How does inflation end?

- Reheating/preheating/thermalization, PBHs ...

- Inflationary mechanism for structure formation

- Quantum-to-classical transition of inflationary perturbations: inflation
is the only known system that uses GR and QM and where high-accuracy

data are available
20



] Future & Open issues for inflat

Observational tools

- Non-Gaussianity

- Gravitational Waves

- PBHs

Remark: these probes can be used to study inflation beyond simple
models but they can also be useful (although challenging) to further
test the vanilla scenarios.

21
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- Other key predictions of vanilla i

1- the presence of a "quantum” GW background from inflation




- Other key predictions of vanilla i

1- the presence of a "quantum” GW background from inflation

- On large scales can be revealed through CMB B modes
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- Other key predictions of vanill

1- the presence of a "quantum” GW background from inflation

- On large scales can be revealed through CMB B modes
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- Next generation of CMB mission with a target: r ~ 10-* [Starobinsky
model, r ~ (2-4) x10-3 , Planckian excursion r~ 10-3]



- Other key predictions of va Ap

1- the presence of a "quantum” GW background from inflation

- On large scales can be revealed through CMB B modes

- Next generation of CMB mission with a target: r ~ 104 [Starobinsky
model, r ~ (2-4) x10-3 , Planckian excursion r~ 10-3]

- What can be learned from a detection ?

Q Energy scale of inflation

Q Final proof of vanilla inflation: consistency check (but needs ny) n.,. = —r/8
O Measurement of the first derivative of the potential

O Field excursion

O Greatly improve model selection

O Greatly improve constraints on reheating



- Other key predictions of van

1- the presence of a "quantum” GW background from inflation

- On small scales can be revealed (maybe?) by direct detection
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- Other key predictions of vanill

Qgwh?

1- the presence of a "quantum” GW background from inflation

- On small scales can be revealed (maybe?) by direct detection
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- Other key predictions of vanill

1- the presence of a "quantum” GW background from inflation

- On small scales can be revealed (maybe?) by direct detection
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- What can be learned from a detection ?

O Reheating temperature
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- Other key predictions of vanil

Qewh?

1- the presence of a "quantum” GW background from inflation

- On small scales can be revealed (maybe?) by direct detection
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- What can be learned from a detection ?

O Reheating temperature

O Equation of state during reheating
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- Other key predictions of vanilla

2- the presence of a GW background from background preheating




- Other key predictions of vanill

2- the presence of a GW background from background preheating
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3- GW and ultra-lights PBHs from metric preheating
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- Other key predictions of vanilla /'@! X

3- GW and ultra-lights PBHs from metric preheating

A

O In the vicinity of the minimum, any V(o) \

potential can be written } parakolic potemtial

Vo) = L 1
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- Other key predictions of vanill

3- GW and ultra-lights PBHs from metric preheating

O Inthe vicinity of the minimum, any /()
potential can be written

Vo) = L 1

O When the field oscillates, the universe
is effectively matter-dominated

A
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}parabolic potential




- Other key predictions of v¢ x'xF' :

3- GW and ultra-lights PBHs from metric preheating

h

O In the vicinity of the minimum, any V(cb)‘ \

parabolic potential

potential can be written

V0)— b 4

O When the field oscillates, the universe
is effectively matter-dominated

O During this phase, perturbations obey
a Mathieu equation




- Other key predictions of va },p

3- GW and ultra-lights PBHs from metric preheating

h

O Inthe vicinity of the minimum, any /()
potential can be written \

parabolic potential

V0)— b 4

O When the field oscillates, the universe
is effectively matter-dominated

O During this phase, perturbations obey
a Mathieu equation. Modes in the first
instability band, ie

k
O<E<v3Hm

undergo parametric reasonance and the
density contrast grows like the scale
factor, like a matter dominated Universe

K. Jedamzik, M. Lemoine, J. Martin, arXiv:1002.3039




- Other key predictions of vanilla

3- GW and ultra-lights PBHs from metric preheating
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- Other key predictions of va },p

3- GW and ultra-lights PBHs from metric preheating
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O Lead to the formation of ultra-light PBHs at the end of inflation
J. Martin, T. Papanikolaou, V. Vennin, arXiv:1907.04236

O Remark: no need to "distord” the potential, USR, multifield etc ...
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3 Conclusions Tk
..A.-‘ ..; %
Recap

O Single field slow-roll (with canonical kinetic ferms) models are solid, robust
and fasifiable scenarios of the early Universe

O They have made predictions (ie not postdictions) that fit well the data

[ There are still open issues, eg how to understand (single field) inflation
from a high energy point of view, reheating ...

d There are still predictions that have not been verified, GW and PBHs

O Recently, many new interesting mechanisms for non-minimal inflation have
been studied (multi-field inflation, inflation and gauge fields efc ...)

O To see to which realizations of inflation we deal with, GW, PBHs and NG
are keys
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- Consequences of a B-modes dete

Message 6: Significant improvement of the constraints of reheating
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- Consequences of a B-modes detecti

Message 6: Signhificant improvement of the constraints of reheating
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- Consequences of a B-modes detect

Message 6: Signhificant improvement of the constraints of reheating
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= Consequences of a B-modes detection

‘- strong EEE moderate

[ weak

23 inconclusive

200
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LiteBIRD

Planck: 1/3 of the models excluded; PRISM & LiteBIRD > 4/5

J. Martin, C. Ringeval and V. Vennin, JCAP 1410 (2014) 10, 038, arXiv:1407.4034
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- Constraining the running

Message 5: Prism can detect the slow-roll running ...

— Planck 2013 - + Litebird HI, — Planck 2013 - Prism HIg,
- -+ Litebird MHI,, - -+ Litebird DWI, - - Prism MHI;, - - Prism DWI,
--- + Litebird ESI;, + Litebird LFI,, - Prism ESIg, Prism LFI,
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J. Martin, C. Ringeval and V. Vennin, JCAP 1410 (2014) 10, 038, arXiv:1407.4034




a What is the best model o

- Even in the class of the simplest models, it remains hundreds of scenarios!

- In order to evaluate the performance of a model, one can compare its
predictions to the data in the parameter space  (n, 1)

- But how can we compare the performance of models with each other?

- The performance of a model can be described by its Bayesian evidence
which is the integral of the likelihood over prior space

p(M;|D) = & (DIM;) m (M)

- Another number is needed in order to describe the performance of a model:

the effective number of unconstrained parameters or Bayesian complexity

NY=N-C=N—[(—2InL(0)) +21In L(OM")]



- What is the best model of g

The performance of a model can be represented in the space (complexity.evidence)

p (M;|D) = & (D|M;) m (M;)

Evidence f‘
"good" models
"bad" models NY=N-C=N —[(-2InL()) + 2In L(6M")]
>
-1 0 +1 +2 Nb of unconstrained

parameters



a What is the best model of i )@,

The performance of a model can be represented in the space (complexity.evidence)

p (M;|D) = & (D|M;) m (M;)

Evid

vidence The performance of a model can be
represented by a point in the space (Nb of
uncons. params / evidence)

"good"” models

"bad” models N'=N—-C=N—[(-2InL(0)) + 2In L(O")]

>
-1 0 +1 +2 Nb of unconstrained

parameters



- What is the best model of i ,',@

The performance of a model can be represented in the space (complexity.evidence)

p (M;|D) = & (D|M;) m (M;)

Evidence f‘
€— The best models are here
"good"” models
"bad” models N =N-C=N—[(-2InL(0)) + 21In L(6M")]
>
1 0 +1 +2 Nb of unconstrained

parameters



Planck: and the winners are ..

Can the inflaton field be the Higgs boson?

Lioi = L —MEIR— H'HR
tot — SM 2 5

! ! !

Standard model of particle Gravity ~ Non-minimal coupling
physics

Ui ' ' |7 Inflation

MY |

> Electroweak
transition
|
Lw 4 §
AYEEN . [T~ / -

0 Xend ICOBE X




a Constraints on reheating tempe

Small field inflation

Loop inflation

pl/t > 400 TeV

plt > 90 Tev

Pt < 1.8 % 107 TeV

pl/t < 6.5 x 107 TeV

P < 4 % 1010 TeV

Wrep, = —0.3
Wrep, = —0.2
Weep, = —0.3
Wrep = —0.2
Wreh =

55



