Audible Axions - from NANOGrav to the lattice

Overview

- ALPs in the early universe
- GW production from ALPs coupled to dark photons
- New numerical results
- Fit to NANOGrav GW signal

Based on work with Camila Machado Wolfram Ratzinger Ben Stefanek

1811.01950 1912.01107 2009.11875 2012.11584

ALPs and the early Universe

 ALP: Pseudoscalar with shift symmetric potential (discrete or continuous)

$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) - \frac{\alpha}{4f} \phi X_{\mu\nu} \tilde{X}^{\mu\nu} + \dots$$

- Motivation:
 - DM candidate via misalignment mechanism
 - Often appear in UV theories

•
$$m_{\phi} \sim 10^{-16} \text{ eV} - 1 \text{ eV}$$

 $f \sim 10^{12} \text{ GeV} - 10^{18} \text{ GeV}$

ALPs and GWs

- Superradiance
 - Probes presence of very light scalars due to BH spindown
- GWs from phase transitions
 - Probes possible UV completions of ALP models
- Here: GWs sourced by axion dynamics after inflation
 - In models where ALP couples to dark photon

ALP dynamics~ 0(1)

• Equation of motion $\phi'' + 2aH\phi' + a^2V'(\phi)$ $-\nabla^2\phi - \frac{\alpha}{fa^2}\mathbf{X}' \cdot (\nabla \times \mathbf{X}) = 0$

ALP dynamics~ 0(1)

- ALP starts rolling when $H \sim m_\phi$
- Redshifts like non-relativistic matter (a^{-3})
 - Candidate for "non-particle" DM

ALP dynamics - with dark photon

• Equation of motion $\phi'' + 2aH\phi' + a^2V'(\phi)$ $= \nabla^2 \phi - \frac{\alpha}{fa^2} \mathbf{X}' \cdot (\nabla \times \mathbf{X}) = 0$

- ALP starts rolling when $H \sim m_\phi$
- ALP is damped due to exponential production of dark photons
 - Reduced relic abundance

Agrawal, Marques-Tavares, Xue, 2018

What about the dark photon?

• Equation of motion (in momentum space)

$$X_{\pm}''(\tau, \boldsymbol{k}) + \left(k^2 \pm k \frac{\alpha}{f} \phi'(\tau)\right) X_{\pm}(\tau, \boldsymbol{k}) = 0$$

• The rolling ALP induces a tachyonic instability

$$X''_{\pm} + \omega_{\pm}(\tau)X_{\pm} = 0$$
 with $\omega_{\pm} = k^2 \mp k \frac{\alpha}{f} \phi'$

Exponential growth of a range of dark photon modes

$$X(\tau) \propto e^{|\omega|\tau}$$
 for $k \sim \frac{\alpha \phi'}{2f}$

9

 The exponential growth amplifies quantum fluctuations in the dark photon fields which source a chiral gravitational wave background

GW probes of audible ALPs

Machado, Ratzinger, Stefanek, PS, 1912.01107

ALP dynamics of once more

• Equation of motion $\phi'' + 2aH\phi' + a^2V'(\phi)$ $-\nabla^2\phi - \frac{\alpha}{fa^2}\mathbf{X}' \cdot (\nabla \times \mathbf{X}) = 0$

- Once a significant population of dark photons is produced, the back-scattering into ALP fluctuations becomes non-negligible
- Requires fully numerical treatment on the lattice

Important to get correct relic abundance prediction

From 2012.11584 with W. Ratzinger, B. Stefanek

See also Kitajima, Sekiguchi, Takahashi, 2018 Agrawal, Kitajima, Reece et al, 2020

Corrections to GW signal

 Qualitative features unchanged, but polarisation is washed out at large couplings

From 2012.11584 with W. Ratzinger, B. Stefanek see also 2010.10990 by (Kitajima, Soda, Urakawa)

Detectable region - update

 $T_{\rm osc}~({\rm GeV})$ 10⁻⁸ 10⁻² 10⁴ 10^{-6} 10^{-4} 10⁰ 10² 10⁶ 10⁻¹⁵ QCD Axion 5 and and missing meet PP ONLY 10⁻¹⁶ VDM 1/f(GeV⁻¹) CMB SK/ 10⁻¹⁷ aDM LISA E NANOGrav N_{eff} Voyage2050 10⁻¹⁸ 10⁻²⁶ 10⁻¹⁶ 10⁻⁶ 10⁴ m(eV)

Audible relaxion

Audible relaxion

$$-\mathcal{L} \supset V(H,\phi) + \frac{r_X}{4} \frac{\phi}{f_{\phi}} X_{\mu\nu} \widetilde{X}^{\mu\nu}$$

 $V(H,\phi) = V_{\rm roll}(\phi) + \mu_H^2(\phi)|H|^2 + \lambda|H|^4 + V_{\rm br}(H,\phi)$

 Dark photon friction essential for trapping relaxion after reheating

→ Potentially observable GW signal

GWs from kinetic misalignment

- Consider the case of large initial $\dot{\phi}$
- Detectable signal also for smaller decay constants
- Fix ALP mass to fit DM relic abundance

 Also consistent with Axiogenesis! From Madge, Ratzinger, Schmitt, PS, (in preparation)

See also Co, Harigaya, Pierce, 2104.02077

NANOGrav saw something!

No 4σ evidence for Quadrupole

Significant Strain at low frequencies

from NANOGrav colaboration: 2009.04496

Fit with broken power law signals

Wolfram Ratzinger & PS, 2009.11875

Example: Audible Axion

- Parameter reconstruction already possible
- Non-trivial constraints from cosmology (N_{eff})

19

Wolfram Ratzinger & PS, 2009.11875

Fit with Phase Transition

- Generic PT parameterisation, best fit with PT at temperatures in few MeV range
- Also here, challenging to build model that does not break cosmology (BBN and/or N_{eff})

Summary

- Gravitational waves offer unique window into the early universe
- New way to probe axions/ALPs
- Tachyonic particle production frequently used in model building (inflation, relaxion, reheating)
 - We now have precise numerical simulations
- NANOGrav might have seen a glimpse from a dark sector
 - Waiting for future data exciting!