Audible Axions - from NANOGrav to the lattice

Gravitational Wave Probes of Physics Beyond Standard Model Warsaw University / Online July 14, 2021

Pedro Schwaller (JGU Mainz)

Overview

- ALPs in the early universe
- GW production from ALPs coupled to dark photons
- New numerical results
- Fit to NANOGrav GW signal

ALPs and the early Universe

- ALP: Pseudoscalar with shift symmetric potential (discrete or continuous)

$$
\mathscr{L} \supset \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-V(\phi)-\frac{\alpha}{4 f} \phi X_{\mu \nu} \tilde{X}^{\mu \nu}+\ldots
$$

- Motivation:
- DM candidate via misalignment mechanism
- Often appear in UV theories
- $m_{\phi} \sim 10^{-16} \mathrm{eV}-1 \mathrm{eV}$

$$
f \sim 10^{12} \mathrm{GeV}-10^{18} \mathrm{GeV}
$$

ALPs and GWs

- Superradiance
- Probes presence of very light scalars due to BH spindown
- GWs from phase transitions
- Probes possible UV completions of ALP models
- Here: GWs sourced by axion dynamics after inflation
- In models where ALP couples to dark photon

ALP dynamics

- Equation of motion

$$
\begin{aligned}
\phi^{\prime \prime} & +2 a H \phi^{\prime}+a^{2} V^{\prime}(\phi) \\
& -\nabla^{2} \phi-\frac{\alpha}{f a^{2}} \mathbf{X}^{\prime} \cdot(\nabla \times \mathbf{X})=0
\end{aligned}
$$

ALP dynamics

- Equation of motion

$$
\begin{aligned}
& \phi^{\prime \prime}+2 a H \phi^{\prime}+a^{2} V^{\prime}(\phi)
\end{aligned}
$$

- ALP starts rolling when $H \sim m_{\phi}$
- Redshifts like non-relativistic matter $\left(a^{-3}\right)$
- Candidate for "non-particle" DM

ALP dynamics - with dark photon

- Equation of motion

$$
\begin{aligned}
\phi^{\prime \prime} & +2 a H \phi^{\prime}+a^{2} V^{\prime}(\phi) \\
& >\nabla^{2} \phi-\frac{\alpha}{f a^{2}} \mathbf{X}^{\prime} \cdot(\nabla \times \mathbf{X})=0
\end{aligned}
$$

- ALP starts rolling when $H \sim m_{\phi}$
- ALP is damped due to exponential production of dark photons
- Reduced relic abundance

What about the dark photon?

- Equation of motion (in momentum space)

$$
X_{ \pm}^{\prime \prime}(\tau, \boldsymbol{k})+\left(k^{2} \pm k \frac{\alpha}{f} \phi^{\prime}(\tau)\right) X_{ \pm}(\tau, \boldsymbol{k})=0
$$

- The rolling ALP induces a tachyonic instability

$$
X_{ \pm}^{\prime \prime}+\omega_{ \pm}(\tau) X_{ \pm}=0 \quad \text { with } \quad \omega_{ \pm}=k^{2} \mp k \frac{\alpha}{f} \phi^{\prime}
$$

- Exponential growth of a range of dark photon modes

$$
X(\tau) \propto e^{|\omega| \tau} \quad \text { for } \quad k \sim \frac{\alpha \phi^{\prime}}{2 f}
$$

From dark photons to GWs

- The exponential growth amplifies quantum fluctuations in the dark photon fields which source a chiral gravitational wave background

Dark photon spectrum

GW spectrum

GW probes of audible ALPs

- Mainly sensitive to high scale ALPs, since
$f_{0} \approx m\left(\frac{T_{0}}{T_{*}}\right)(\alpha \theta)^{2 / 3}=\sqrt{\frac{m}{M_{P}}} T_{0}(\alpha \theta)^{2 / 3}$,

$$
\Omega_{\mathrm{GW}}^{0} \approx \Omega_{\gamma}^{0}\left(\frac{f}{M_{P}}\right)^{4}\left(\frac{\theta^{2}}{\alpha}\right)^{\frac{4}{3}}
$$

ALP dynamics - once more

- Equation of motion

$$
\begin{aligned}
\phi^{\prime \prime} & +2 a H \phi^{\prime}+a^{2} V^{\prime}(\phi) \\
& -\nabla^{2} \phi-\frac{\alpha}{f a^{2}} \mathbf{X}^{\prime} \cdot(\nabla \times \mathbf{X})=0
\end{aligned}
$$

- Once a significant population of dark photons is produced, the back-scattering into ALP fluctuations becomes non-negligible
- Requires fully numerical treatment on the lattice

Important to get correct relic abundance prediction

From 2012.11584 with W. Ratzinger, B. Stefanek

Corrections to GW signal

- Qualitative features unchanged, but polarisation is washed out at large couplings

Detectable region - update

Audible relaxion

- Audible relaxion

$$
-\mathcal{L} \supset V(H, \phi)+\frac{r_{X}}{4} \frac{\phi}{f_{\phi}} X_{\mu \nu} \widetilde{X}^{\mu \nu}
$$

$V(H, \phi)=V_{\text {roll }}(\phi)+\mu_{H}^{2}(\phi)|H|^{2}+\lambda|H|^{4}+V_{\text {br }}(H, \phi)$

- Dark photon friction essential for trapping
 relaxion after reheating
- \rightarrow Potentially observable GW signal

GWs from kinetic misalignment

- Consider the case of large initial $\dot{\phi}$
- Detectable signal also for smaller decay constants
- Fix ALP mass to fit DM relic abundance

$$
f_{\phi}=5 \times 10^{13} \mathrm{GeV}
$$

- Also consistent with

From Madge, Ratzinger, Schmitt, PS, (in preparation) Axiogenesis!

NANOGrav saw something!

No 4σ evidence for Quadrupole
Significant Strain at low frequencies

Frequency [Hz]

Fit with broken power law signals

Wolfram Ratzinger \& PS, 2009.11875

Example: Audible Axion

- Parameter reconstruction already possible
- Non-trivial constraints from cosmology ($\mathrm{N}_{\text {eff }}$)

Fit with Phase Transition

- Generic PT parameterisation, best fit with PT at temperatures in few MeV range
- Also here, challenging to build model that does not break cosmology (BBN and/or $\mathrm{N}_{\text {eff }}$)

Summary

- Gravitational waves offer unique window into the early universe
- New way to probe axions/ALPs
- Tachyonic particle production frequently used in model building (inflation, relaxion, reheating)
- We now have precise numerical simulations
- NANOGrav might have seen a glimpse from a dark sector
- Waiting for future data - exciting!

