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Introduction

curvature perturbation, 
formation of PBHs,  

and gravitational waves
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A peak in the primordial curvature perturbation, 
which leaves horizon and gets frozen at a*. 
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PBH formation: conventional case
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The peak re-enters horizon during radiation era.
If the amplitude > O(0.1), PBH will form. 

Rad.dom. 
1/Hr ~a2

log L
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k* = Ha*

PBH formation: conventional case



fraction β that turns into PBHs

• When σM <<δc, β can be approximated by exponential:
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LIGO-Virgo BHs 
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GWs can capture PBHs!

curvature 
perturvation

large
 peak

s form
 PBH

s

NL effect induces GWs spacetime oscillations

PBH

PBHs = CDM with MPBH ~1021g  
generates GWs with f~10-3 Hz

Background GWs 
in LISA band

PBHs=LV BHs with M~10M_sol  
generates GWs with f~10-8 Hz 
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PTA band
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Fig. 1. Top: The energy density of the induced GWs for the power spectrum for a peak width, ∆ =
0.0, 1.0 × 10−3, 1.0 × 10−1, 1.0. Bottom: Energy density of scalar-induced GWs associated with PBH
formation together with current pulsar constraint (thick solid line segment) and sensitivity of various
GW detectors (convex curves). Solid wedged lines indicate the energy density with the parameters
(ΩPBHh2, MPBH) = (10−5, 102M") (left), (10−1, 1020g) (right) for sufficiently small ∆ (thick lines) and
∆ = 1.0 (thin lines).

Downloaded from https://academic.oup.com/ptp/article-abstract/126/2/351/1838316
by guest
on 14 July 2018

GWs can test PBH scenario!  

Saito & Yokoyama 0812.4339 

(ΩPBHh2, MPBH) = (10−5,100M⊙)
(ΩPBHh2, MPBH) = (10−1,1020g)
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MPBH ∼ 0.1M⊙ ( 1GeV
T )

2
∼ 10M⊙ ( 1pc−1

k )
2

PBHs = CDM?

PBHs = LV BHs?



where ⌦(0)(k), ⌦(2)(k), ⌦(4)(k) are the corresponding integral terms, and they are all of order
O(1) at the peak. Therefore, fixing the PBH abundance � that is determined by our fit, the

GW spectrum induced by the Gaussian part of the curvature perturbation is ⌦(0)

GW
⇠ A

2

0
,

while the extremely non-Gaussian part of GW spectrum is ⌦fNL!1
GW

⇠ O(A4
1). This gives
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with A0 = 0.0404 obtained from the best-fit parameter in section 4. Therefore, we can
see that the peak value of the GW spectrum is greatly suppressed, which makes it possible
to evade the constraint from EPTA. Accurate calculations for ⌦GW from (5.9) is done and
depicted in Fig. 7 for a fixed PBH abundance � = 3.4 ⇥ 10�12 obtained from Eq.(2.1), for
FNL = 0, 10, 100 and FNL ! 1. It is shown explicitly that all black holes observed by
LIGO can be PBHs, if the curvature perturbation is non-Gaussian with FNL & 10.
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Figure 7. The GW spectrum with FNL = 0, 10, 100 and FNL ! 1 fit from LIGO detections
with respect to the sensitivities of current/future PTA projects. The current constraints (shaded)
are given by EPTA [95], PPTA [140], NANOGrav[141], and the future sensitivity curve of SKA is
depicted following [142].

Here we would like to mention that the future radio telescope project Square Kilometer
Array (SKA) [143] can extend the detecting accuracy to ⌦GW . 10�14 at around 4 nHz.
We depict the expected SKA sensitivity curve in Fig. 7. It is easy to see that whether the
LIGO/VIRGO detection events are mostly consists of PBHs can be easily checked by SKA.
We can also see that as the non-Gaussian peak has a higher frequency, we do not need
20 years to see that peak. 5 to 10 years of observation will be enough to see whether the
non-Gaussian peak in GW spectrum exists or not.
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Cai, Pi, Wang & Yang ‘19“Pulsar Timing Array Constraints on …”

fpeak ∼ 6.7 × 10−9 ( MPBH
M⊙ )

−1/2

Hz

Testing LV BH=PBH scenario
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Figure 2. The exact and corresponding parametrized mass functions f(m) of PBHs are shown with
solid and dashed lines respectively. Top: AR = 0.05 , from right to left, k⇤ = 105.5, 106.0, 106.5Mpc�1,
respectively. Bottom: k⇤ = 106Mpc�1, from bottom to top, AR = 0.04, 0.05, 0.06, respectively.

Taking into account the torques caused by the surrounding PBHs and linear density
perturbations, the merger rate of PBH binary reads [114–116]

dR = S
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f̃(m1)f̃(m2)dm1dm2, (4.1)

where M ⌘ m1 +m2, µ ⌘ m1m2/M
2. We also define the normalized mass function of PBHs
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where �eq ⇡ 0.005 is the variance of the density perturbations of the ambient fluid of the
universe at equality.

Assuming all the BBH mergers observed by LIGO/Virgo during first and second ob-
serving runs [117] are PBHs which originate from (3.1), and by following the method in [115],
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for f(m) peaked at m ∼ 17M⊙
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lots of speculations after recent NANOGrav 12.5 years result… 
Gaussian case seems on the verge of exclusion/or detection!

NANOGrav collaboration ‘20



Isocurvature Perturbation 
due to inhomogeneous 

PBH distribution
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What if PBHs have completely evaporated? 
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PBHs

Papanikolaou et al., arXiv:2010.11573 
Domenech, Lin & MS, arXiv:2012.08151

Even if PBHs are unclustered, 
inhomogeneities due to random 
distribution may induce GWs when 
the universe is reheated by PBH 
evaporation 

ρ

x
Initial RD universe

PBH distribution

radiation density

ρ

x
PBHD universe

adiabatic perturbation

ρ

x
RD universe

oscillating adiabatic perturbation

GWs

For MPBH ≲ 108 g, tevap ≲ 1 s
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 Induced GWs from PBH evaporation

Inomata et al., arXiv:1904.12878

Inomata et al., arXiv: 2003.10455

A fast transition leads to strong 
enhancement of induced GWs on 
sub-horizon scales, which is the 
case for PBH evaporation.
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may lead to strong constraints on 
early PBH dominance model 

If the transition from PBHD to RD is slow (Δt~ H-1) as in the case of 
decaying particles, there will be no significant production of induced GWs.

1
Δt

= 1
M

dM
dt

= 1
3(tev − t) ≫ H as t → tev

Q = Q0 e−Γt → 1
Δt

= 1
Q

dQ
dt

= − Γ = const .

Domenech, Lin & MS, arXiv:2012.0851
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Constraints on early PBH dominated universe
Domenech, Lin & MS, arXiv:2012.08151
Domenech, Takhistov & MS, arXiv:2105.06816

Monochromatic mass function for PBHs. 
Poisson distribution for -S(k) = 2

3π (k /kUV)3; k < kUV = n−1/3
PBHδnPBH/nPBH :

• Assumptions

• Resulting spectrum

(
ΩGW,max

Ωr,0 ) ≈ 5 × 1034 β16/3 ( M
104 g )

14/3

β : PBH fraction at formation

kbr ≈ 0.04 kUV (MPBH/104 g)−1/6

kbr

∝ k

∝ k5sharp rise ~ k 5 near the peak. 
Peak value:

constraints on β
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allowable range ofβ
βmin ≈ 6 × 10−10 ( MPBH

105 g )
−1

βmax ≈ 3 × 10−8 ( MPBH
105 g )
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Caviat . . .

-S(k) = 2
3π (k /kUV)3; k < kUV = n−1/3

PBH

For the primordial isocurvature perturbation,

the resulting curvature perturbation at PBH dominated Universe is

Φ = 3
4 (

keq

k )
2

S ∼ 0.3 (
keq

kUV )
2

( k
kUV )

−1/2

δρ
ρ

= 2
3 ( k

aH )
2

Φ ∼ 0.1 (
aevap

aeq ) ( k
kUV )

3/2

≳ 1

The density perturbation becomes nonlinear for k>kNL :

kUV > k > kNL ∼ 5 (
aeq

aevap )
2/3

kUVfor

(
aeq

aevap )
2/3

≈ exp [− 8
9 (log β

10−7 + log M
104 g )]

keq < k < kUVfor
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≈ exp [− 8
9 (log β

10−7 + log M
104 g )]

keq < k < kUVfor

need more studies!
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take-home messages:

• PBHs may play central roles in GW 
cosmology

• (nonlinear) isocurvature perturbations 
may play important roles in PBH-GW 
cosmology 

PBH-GW Cosmology!


