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FIG. 7: Strain power spectral density (psd) amplitude vs. frequency for various GW detectors and GW

sources (from [118]). See Fig. 6 caption for the meaning of various acronyms.

1993 First successful simulation of the head-on collision of two BHs, QNM ringing of the final BH ob-

served [15].

1993 Choptuik uses mesh refinement and finds evidence of universality and scaling in the gravitational

collapse of a massless scalar field [57].

1994 The “Binary Black Hole Grand Challenge Project”, the first large collaboration with the aim of

solving a specific NR problem (modeling a binary BH coalescence), is launched [58, 131].

1995 Through a conformal decomposition, a split of the extrinsic curvature and use of additional variables

Shibata & Nakamura [173] and Baumgarte & Shapiro (1998) [27] recast the ADM [19] Hamiltonian

equations as the so-called BSSN system.

1996 Brügmann [49] uses mesh refinement for simulations of BH spacetimes.

1998 First stable simulations of a single BH spacetime in fully 4 dimensional NR within a “characteristic

formulation” [92, 120], and two years later within a Cauchy formulation [10].

2000 The first general relativistic simulation of the merger of two NSs [174].

2005 Pretorius [160] achieves the first long-term stable numerical evolution of a BH binary.

2006 Soon afterwards, other groups independently succeed in evolving merging BH binaries using di↵erent

techniques [24, 51].
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Hellings-Downs Curve
• Correlation between pairs of pulsars on the sky (Hellings & Downs 1983)

• Isotropic, stochastic GW background (GWB) signal should essentially have 
power law (with index ! = -2/3)

• But, astrophysics modifies this

2 L. Lentati et al.

2.3ms over the course of 30 yr, by exploiting the high precision
with which the time of arrival (TOA) of electromagnetic radiation
from pulsars can be measured, deviations from general relativity
have been constrained by this system to be less than 0.3% (Weis-
berg, Nice & Taylor 2010).

Since then, observations of the double-pulsar, PSR
J0737�3039, have provided even greater constraints, placing
limits on deviations from general relativity of less than 0.05%
(Kramer et al. (2006), Kramer et al. in prep.). It is this extraor-
dinary precision that also makes pulsar timing one possible route
towards the direct detection of GWs, which remains a key goal in
experimental astrophysics.

For a detailed review of pulsar timing we refer to Lorimer &
Kramer (2005). In general, one computes the di↵erence between
the expected arrival time of a pulse, given by a pulsar’s timing
model which characterises the properties of the pulsar’s orbital mo-
tion, as well as its timing properties such as its spin frequency, and
the actual arrival time. The residuals from this fit then carry phys-
ical information about the unmodelled e↵ects in the pulse propa-
gation, including those due to GWs (e.g. Sazhin 1978; Detweiler
1979).

Individual pulsars have, for several decades, been used to set
limits on the amplitude of gravitational radiation from a range of
sources (e.g. Kaspi, Taylor & Ryba 1994). However, by using a
collection of millisecond pulsars, known as a pulsar timing array
(PTA, Foster & Backer 1990), one can both increase the signal-
to-noise ratio of the e↵ect of gravitational radiation in the timing
residuals, and use the expected form for the cross correlation of the
signal between pulsars in the array to discriminate between the GW
signal of interest, and other sources of noise in the data, such as the
intrinsic spin-noise due to rotational irregularities (e.g. Shannon &
Cordes 2010), or delays in the pulse arrival time due to propagation
through the interstellar medium (e.g. Keith et al. 2013). In the spe-
cific case of an isotropic stochastic gravitational-wave background
(GWB), which is the focus of this paper, this correlation is known
as the ‘Hellings-Downs’ curve (Hellings & Downs 1983), and is
only a function of the angular separation of pairs of pulsars in the
array.

The lowest frequency to which a particular pulsar timing
dataset will be sensitive is set by the total observing span for that
dataset. Sensitivity to frequencies lower than this is significantly
decreased due to the necessity of fitting a quadratic function in the
pulsar timing model describing its spin down. PTA datasets are now
entering the regime where observations span decades, and as such
are most sensitive to GWs in the range 10�9

�10�8 Hz. The primary
GW sources in this band are thought to be supermassive black hole
binaries (SMBHBs) (Rajagopal & Romani 1995; Ja↵e & Backer
2003; Wyithe & Loeb 2003; Sesana et al. 2004; Sesana, Vecchio
& Colacino 2008), however other sources such as cosmic strings
(see, e.g. Vilenkin 1981; Vilenkin & Shellard 1994) or relics from
inflation (see, e.g. Grishchuk 2005) have also been suggested.

The formation of SMBHBs is a direct consequence of the hi-
erarchical structure formation paradigm. There is strong evidence
that SMBHs are common in the nuclei of nearby galaxies (see Kor-
mendy & Ho 2013, and references therein). The fact that many dis-
tant galaxies harbour active nuclei for a short period of their life im-
plies that they were also common in the past. In ⇤-Cold Dark Mat-
ter (⇤-CDM) cosmology models galaxies merge frequently (Lacey
& Cole 1993). During a galaxy merger the SMBHs harboured in the
galactic nuclei will sink to the center of the merger remnant, even-
tually forming a SMBHB (Begelman, Blandford & Rees 1980). As
a consequence the Universe should contain a potentially large num-

ber of gradually in-spiralling SMBHBs. The incoherent superposi-
tion of GWs from these binaries is expected to form an isotropic
stochastic GWB. Deviations from isotropy, however, such as from a
small number of bright nearby sources, could result in individually
resolvable systems (Lee et al. 2011), and an anisotropic distribu-
tion of power across the sky (Mingarelli et al. 2013; Taylor & Gair
2013; Gair et al. 2014). These latter situations are the subject of
two companion papers (Taylor et al. in prep., Babak et al. in prep.);
here we focus on the possibility of detecting a stochastic isotropic
GWB, and we will discuss the implications of our findings for the
astrophysics of SMBHBs, cosmic strings, and relics from inflation.

An isotropic, stochastic GWB of cosmological or astrophysi-
cal origin can be described in terms of its GW energy density con-
tent ⇢gw per unit logarithmic frequency, divided by the critical en-
ergy density, ⇢c, to close the Universe:

⌦gw( f ) =
1
⇢c

d⇢gw

d ln f
=

2⇡2

3H2
0

f 2h2
c( f ). (1)

Here, f is the GW frequency, ⇢c = 3H2
0/8⇡ is the critical energy

density required to close the Universe, H0 = 100 h km s�1 Mpc�1 is
the Hubble expansion rate, with h the dimensionless Hubble param-
eter, and ⇢gw is the total energy density in GWs (Allen & Romano
1999; Maggiore 2000).

Typically the ‘characteristic strain’, hc( f ), associated with a
GWB energy density ⌦gw( f ) is parametrised as a single power-law
for several backgrounds of interest:

hc = A
 

f
yr�1

!↵
, (2)

where A is the strain amplitude at a characteristic frequency of
1yr�1, and ↵ describes the slope of the spectrum. Finally, hc is di-
rectly related to the observable quantity induced by a GWB in our
timing residuals, the one-sided power spectral density, S ( f ), given
by:

S ( f ) =
1

12⇡2

1
f 3 hc( f )2 =

A2

12⇡2

 
f

yr�1

!��
yr3, (3)

where � ⌘ 3 � 2↵. Note that unless explicitly stated otherwise,
henceforth when referring to spectral indices we will be referring
to the quantity �.

The expected spectral index varies depending on the source of
the stochastic background. For a GWB resulting from inspiraling
SMBHBs the characteristic strain is approximately hc( f ) / f �2/3

(Rajagopal & Romani 1995; Ja↵e & Backer 2003; Wyithe & Loeb
2003; Sesana et al. 2004), or equivalently, � = 13/3, whereas pri-
mordial background contributions or cosmic strings are expected to
have power-law indices of � = 5 (Grishchuk 2005), and � = 16/3
(Ölmez, Mandic & Siemens 2010; Damour & Vilenkin 2005) re-
spectively. However, for cosmic strings in particular, a single spec-
tral index is not expected to accurately describe the spectrum in the
PTA frequency band (Sanidas, Battye & Stappers 2012).

A multitude of experiments have set limits on the amplitude
of the stochastic GWB, either at a reference frequency as is done
for PTAs (Shannon et al. 2013) and ground-based interferome-
ters (Aasi et al. 2014), or by reporting a value for GW energy den-
sity integrated over all frequencies as is done by Big Bang Nu-
cleosynthesis measurements, e.g. (Cyburt et al. 2005) and Cosmic
Microwave Background (CMB) measurements (Smith, Pierpaoli &
Kamionkowski 2006; Sendra & Smith 2012). As such, an upper
limit on the stochastic GWB reported in terms of either ⌦gw( f )h2,
or ⌦gw( f ) for a specified value of h provides a clear way to report
our limits.
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NB: Shape depends on graviton properties – see later

We may not observe in the optimal frequency window…! – See later



Pulsar Timing Array Experiments



See Verbiest et al. (2016) and Lentati et al. (2016)

First data release contains data of 49 millisecond pulsars

Several frequencies, cadence up to 1 per 1-2 weeks

Legacy data sets span back 25 years

All PTAs see a Common Red Noise Process – but what does it mean?

Pulsar Timing Array Experiments
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Status
• There is no detection yet
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(to be submitted):

25 years of high precision data.

Here, 6 pulsars – publication with

25+ pulsars in prep. 

4 The EPTA

Figure 1. Timing residuals of the six pulsars used in this paper. For each pulsar, the residuals before and after subtraction of DM and red noise are shown. The
circles, triangles and squares represent L-band, S/C-band and P-band observations, respectively (see Table 1 for information on the observing frequency bands).
The filled and unfilled symbols indicate the new backend data and DR1 TOAs, respectively.
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Figure 3. Results from CURN analysis using ENTERPRISE (EP) and FORTYTWO (42), both for the free-spectrum (left panel) and the single power-law (right
panel) analyses. The left plot shows the posterior distribution for the amplitude of the power at each frequency bin. Upper limits (the majority of points) are noted
with a downward arrow; otherwise, the 95% uncertainties are shown. The right plot shows the two-dimensional posterior distribution for the CURN power-law
amplitude and spectral index with the dashed line indicating the expected W = 13/3 from a GWB from SMBHBs. The two analysis pipelines have produced
consistent results.

Table 5. 95% constraints on the power-law (PL) parameters for the di�erent analyses discussed in Sections 5 and 6 with the Jenson-Shannon divergence computed
relative to the ENTERPRISE fixed SSE run.

Algorithm + Model log10 �CRS J-S div. WCRS J-S div.

ENTERPRISE + DE438 PL �14.29+0.26
�0.33 0 3.78+0.69

�0.59 0

FORTYTWO + DE438 PL �14.33+0.27
�0.31 0.00904 3.87+0.67

�0.60 0.00942

FORTYTWO + DE438 CRS PL �14.37+0.29
�0.33 0.03013 3.92+0.69

�0.63 0.02237

ENTERPRISE + BAYESEPHEM PL �14.31+0.29
�0.39 0.00446 3.69+0.81

�0.71 0.01329

ENTERPRISE + EPHEMGP PL �14.42+0.32
�0.41 0.07145 3.91+0.85

�0.83 0.02482

FORTYTWO + LINIMOSS PL �14.41+0.35
�0.54 0.06118 3.91+1.06

�0.87 0.03656

ENTERPRISE + DE438 broken PL �14.24+0.31
�0.37 0.02293 3.67+0.76

�0.71 0.02097

two CRSs, ie. a combination of CURN with one of the remaining674

three ORFs. The models are listed in Table 4.675

We carried out calculations of Bayes factors with both the676

ENTERPRISE and the FORTYTWO packages. For ENTERPRISE the677

Bayes factors were obtained through a hypermodel structure com-678

paring two models against each other. With FORTYTWO Bayes factors679

were calculated using the global logarithmic evidence for each anal-680

ysis, which is calculated by PYMULTINEST using the ‘Importance681

Nested Sampling’ option.682

Table 4 shows a summary of the Bayes factors for the di�erent683

models. According to the Kass & Raftery (1995) criteria, the addition684

of either of the GWB, CLK or EPH signals to the base PSRN signal685

is decisively favoured with a log10 Bayes factor (log10 BF) > 2.686

The strongest Bayes factor is for the CURN model, although the687

evidence for the GWB is only lower by log10 BF⇡ 0.4. This di�erence688

essentially does not give a clear advantage to CURN, although a689

conservative approach would suggest that the data does not favour690

the GWB signal, which is the signal we are interested in finding.691

The EPH model, however, is clearly less favoured, with an log10 BF692

di�erence to CURN or the GWB of order ⇠ 1, which is a substantial693

di�erence. We will examine the case of EPH in more detail in Section694

6.5.2. In contrast to the three models discussed above, the monopolar695

correlation is only mildly favoured with respect to the PSRN base696

model.697

Since the CURN model has the strongest evidence of the models698

with a single CRS, we can compare it against models which include699

another additional common process. The idea is to test whether there700

may be evidence for several physically motivated common processes701

coexisting in the data. In general, none of the three spatially correlated702

processes add substantial evidence to the single CURN. The ability703

to distinguish between di�erent spatial correlations appears to be704

limited by the use of only 6 pulsars in this analysis. We thus plan to705

expand the analysis to include a larger number of MSPs.706

The log10 BFs values obtained with ENTERPRISE and FORTYTWO707

show similar trends. Although the absolute numbers di�er (this is708

expected since the values are not in general calibrated, as discussed709

in Section3.7), the relative strength between di�erent models remain710

similar, with the exception being model 1. This can be due to di�culty711

in estimating the Bayes factor and uncertainty and variation between712

run-to-run analyses6.713

6 For example, Bayes Factors calculated with ENTERPRISE were observed
to fluctuate at levels higher than the formal uncertainties when running the
same analysis multiple times.
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DR1 vs DR2 

EPTA vs NG

14 The EPTA

Figure 6. Comparison of the CURN recovered signals with DR2 and DR1 in the same style as Figure 3, both using free-spectrum and power-law analyses with
ENTERPRISE. The CURN signal properties are in agreement with the expected detection evolution of a stationary red signal when extending the timespan. The
improvement is largely due to the significant increase in data quality with the DR2 extension.

also more in line with more probable theoretical expectations (e.g.823

Chen et al. 2019; Middleton et al. 2021). The DR2 free spectrum on824

the left of Figure 6 also seems to be extending the DR1 free spectrum.825

In DR1, about 4 of the lowest frequencies support the existence of826

a CURN. The median DR2 power-law also passes through the DR1827

free spectrum power distributions.828

While the timespan extension has contributed to the improvement829

of the CURN analysis, we note that this also appears to be to a large830

degree the result of the much better multi-frequency coverage of831

the newly added data. This resulted in very significantly improved832

constraints of the pulsars’ DM parameter space and decorrelation833

of said DM parameters from the pulsar red noise parameters. This834

is in conrast to DR1, where the DM and red noise parameters were835

significantly correlated for multiple pulsars, adding uncertainty to the836

pulsar red noise parameters that would subsequently result in similar837

uncertainties of common red signals. We can see how much pulsars838

have improved in their ability to contribute to the recovered CURN,839

by examining the changes in the dropout factors for each pulsar,840

as presented in Figure 5. PSR J1909�3744 is the most prominent841

example of the achieved improvement, as it has moved from having842

the smallest contribution to the largest. This pulsar has the highest843

TOA precision, however in DR1 it only had a time-span of 9.38 yr844

(in contrast to 15.7 yr in DR2) and had highly correlated red and845

DM noise parameters. Four other MSPs have increased their dropout846

factors, supporting the stationarity assumption of the CURN.847

We finally examine if the extension of the dataset from DR1 to848

DR2 creates any unexpected di�erences in the the Bayes Factors849

between the di�erent models examined in Section 3.7. For the CURN850

case, and using the DE438 SSE, the log10 BF has increased from851

⇡ 1.2 to ⇡ 3.5, further supporting the stationarity assumption, and852

strongly suggesting that the signal, irrespective of its origin and853

interpretation, is not a statistical fluctuation. We finally note that854

despite increased Bayes Factors for the di�erent CRS signals in855

DR2 by comparison to DR1, the di�erence in the evidence between856

CURN and the GWB, has not drastically change from DR1 (see857

LTM15), thus still not allowing to support the finding of a GWB858

or other spatially correlated signal. This is most likely due to only859

using 6 pulsars in both cases, which does not o�er the necessary860

sampling of the angular separations. We also note that the clock-861

error signal remains the least favourable physically motivated CRS.862

This is expected from the posterior distribution of the ORF in Fig. 2,863

which is consistently away from 1 within the 95% uncertainty level.864

The full comparison of Bayes Factors between DR1 and DR2 can be865

found in Table A2.866

6.5 Addressing possible CRS from SSE errors867

Previous studies (eg. Tiburzi et al. 2016; Guo et al. 2019; Vallisneri868

et al. 2020, etc.) have shown that the SSE modelling plays an im-869

portant role in the search for common signals with PTA data. We870

therefore investigate the degree by which SSE inaccuracies a�ect the871

CURN parameter estimation, and whether modelling possible SSE-872

induced signals a�ects the CRS model selection results. In this study873

we apply three independently developed algorithms that introduce874

modelling of the SSE uncertainties into the CRS search. This lays875

the groundwork for a robust and cross-checked mitigation of the SSE876

e�ects in future GWB searches. All three algorithms assume that the877

SSE parameters are close to the correct ones and as such investi-878

gate linear deviations from their values. The algorithms di�er in the879

method used to derive the induced TOA delays by SSE parameter880

inaccuracies and the SSE used as reference.881

The first method applies the BAYESEPHEM model (Vallisneri et al.882

2020), which has previously been used in studies estimating upper883

limits for the GWB and examining common signals (Arzoumanian884

et al. 2018, 2020). This algorithm is based on a physical model885

that accounts for induced TOA delays due to linear deviations in886

planetary masses, rotation rate about the ecliptic pole, and planetary887

average orbital elements, resulting in a quasi-Keplerian model for the888

orbit. Allowing these parameters to vary with reference to the SSE889

DE436 (Folkner & Park 2018) create what we refer to as variational890

partials. The linear combination of partials that minimize the dif-891

ferences in the orbit with respect to DE436 (di�erences well below892

detectability by TOA precision of real data) define the values for the893

planetary parameters that are used as the BAYESEPHEM initial values.894

In this work, BAYESEPHEM includes terms accounting for the masses895

of Jupiter, Saturn, Uranus and Neptune, the rotation rate around the896

ecliptic pole and orbital elements for Jupiter as well as for Saturn,897

since, the EPTA DR2 is approaching 25 years of timespan. Each of898

MNRAS 000, 1–21 (2021)
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Figure 8. Common uncorrelated red noise search free spectrum and power-law recovery comparison between EPTA DR2 and NG12 with DE438 (Arzoumanian
et al. 2020) in the same style as Figure 3

Figure 9. Comparison of the CURN recovered signals with DR2 and DR1,
both using fixed DE438 and BAYESEPHEM with ENTERPRISE and fixed
WCURN = 13/3. The shaded region represent the NG12 fixed DE438 analysis
(Arzoumanian et al. 2020).

models while retaining the spectral index as a free parameter. In order1082

to make a fair comparison with the NANOGrav model comparison1083

results in which W = 13/3, we have repeated our analysis by fixing the1084

spectral index. We obtain a log10 BFs of⇡ 3.8 for both PSRN+CURN1085

and PSRN+GWB vs PSRN (DE438). This is to be compared with the1086

NANOGrav result of 4.5 (DE438) with an estimate error of 0.9. We1087

can therefore conclude that the EPTA DR2 and NANOGrav 12.5yr1088

results are broadly in agreement.1089

Our EPTA DR2 model comparison results appear to be less af-1090

fected by SSE uncertainties than the NANOGrav 12.5yr results. A1091

possible reason is that the NANOGrav dataset has a maximum times-1092

pan of roughly half a year longer than the Jovian orbital period, while1093

the EPTA data covers close to two Jovian orbits and is a few years1094

short of Saturn’s orbit. This could result in any induced TOAs by1095

uncertainties in Jupiter’s orbit to be better decorrelated from noise1096

parameters in the EPTA data. Another possibility, however, is that1097

the present EPTA dataset does not e�ciently recover the dipolar cor-1098

relations with BAYESEPHEM due to only using 6 pulsars, with sparse1099

coverage of the pulsars angular separations space. The addition of1100

more pulsars in the EPTA array will provide more information on1101

this.1102

1103

The commonality of the single pulsar red noises, which could be1104

interpreted as a CRS, has been investigated by the PPTA (Goncharov1105

et al. 2021, in prep.). Though not unexpected, the PPTA has used1106

simulated data to unambiguously demonstrate that individual pul-1107

sar noises can be recovered by the analysis code as a CURN, if the1108

spectral properties are similar. This is something that must be con-1109

sidered carefully, as MSPs possibly may have common underlying1110

mechanisms that produce intrinsic stochastic noise (see e.g Jones1111

1990; Shannon & Cordes 2010; Melatos & Link 2014). In Fig. 10,1112

we show the power spectra for each of the 6 EPTA pulsars using1113

the maximum a posteriori (MAP) values of the SPNA runs from1114

ENTERPRISE. One can see a broad agreement of all pulsars with the1115

CURN, thus strengthening this CURN as a common noise floor. How-1116

ever, PSR J1909-3744’s red noise power is poorly constrained at the1117

lowest frequency, consequently, plotting a point estimate can give the1118

impression of a dip below the CURN. Looking at PSR J1012+5307,1119

the red noise is clearly present in this pulsar and its shape is consistent1120

with other pulsars. However the level of white noise is higher and,1121

as a result, its slope appears to be lower and thus inconsistent with1122

the CURN. This is a possible cause of results of dropout analysis1123

observed for this pulsar in Fig. 5.1124

The noise properties of the 6 pulsars used in this study are ana-1125

lyzed in greater detail and the results will be published separately in1126

an upcoming paper (Chalumeau et al., in prep.). In a similar fashion1127

that Lentati et al. (2016) has examined the noise properties of the1128

IPTA DR1 and more recently Goncharov et al. (2021) of the PPTA1129

DR2, the EPTA is optimizing the pulsar noise models via Bayesian1130

model selection. One important aspect will be on the chromaticity,1131

ie. radio-frequency dependence, of the noise. Apart from DM, scat-1132

tering variation can also introduce a significant noise term to the1133

TOAs (Main et al. 2020). Other additional noise components such as1134

band noise and system noise will also be investigated. The latter, is1135

noise attributed to one specific observing system, therefore not be-1136

ing intrinsic pulsar noise. Finding system noise requires overlapping1137

data by multiple observing systems in the same frequency band. The1138

addition of new-generation-backened data are now allowing better1139

such investigations than DR1, where only some basic investigation1140

could be applied (see Caballero et al. 2016) and further work had to1141

be completed on the IPTA DR1 (Lentati et al. 2016).1142
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Interstellar delays of J0613-0200 with LEAP 5

Figure 1. Top: Dynamic Spectra of 5 observations around the same time of year, to have comparable contributions from the Earth’s velocity. The colourbar
extends from 2s below the mean to 5s above. Bottom: Corresponding secondary spectra, with a logarithmic colourbar extending three orders of magnitude.
Clear arcs with noticeable localised clumps of power are seen, these correspond to prominent diagonal features in the above dynamic spectra. The observation
from 2013 is anomalous, showing extremely fine stripes in the dynamic spectrum, corresponding to power at large time delays.

delay through the expectation value of t , computed as

hti=
R T

0 t|I(t)|2dt
R T

0 |I(t)|2dt
, (24)

where T = 8µs, defined by our choice of channelisation.
Artefacts in the dynamic spectrum, such as RFI, phasing im-

perfections, and the window function lead to correlated features
in the secondary spectrum. As such, the noise properties are not al-
ways well behaved, and direct error propagation underestimates the
error on hti. We estimate our errors directly from the cumulative
function in equation (24); at high enough T the integral plateaus,
with residual variations caused by the effect of integrating noise in
the secondary spectrum. We take the mean and standard deviation
of equation (24) between T = 4 � 8 µs as our measurement and
error of hti respectively.

4.4 ”Timing” a convolved template

To illustrate the effects of scattering on a profile, we can di-
rectly convolve our measure of the amplitude of gI(t) into a
template profile and measure the time offset using the standard
Fourier template-matching algorithm outlined in the appendix of

Taylor (1992). We create an analytic template using the standard
psrchive tool paas (Hotan et al. 2004), fitting the profile with a
series of von Mises functions, and interpolate the solution to have
the equivalent 31.25 ns bins of our measured |I(t)|2. We convolve
the two, and measure the relative time delay between the convolved
template against the original one. Figure 2 shows this convolution
applied to one of our observations. The measured time delay in this
way agrees perfectly with the method in the previous section; tim-
ing recovers the shift correctly, even when the effects are not visibly
noticeable.

We note again that this is not precisely the intensity impulse
response, but rather its autocorrelation, but it is close enough in
amplitude to demonstrate that the convolved template is visually
identical (with residuals at the 0.1% level after aligning the tem-
plate), yet is measurably delayed. In addition, |I(t)|2 is noticeably
clumpy and poorly described by an exponential, even after being
effectively smoothed by the autocorrelation.

4.5 Inferred time delay from the frequency ACF

A standard way to infer the time delays from scattering is to con-
struct the auto-correlation functions R(Dn) = (I ⇤ I)(Dn). Fitting
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2Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL,UK
3Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
4ASTRON, the Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
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7Laboratoire de Physique et Chimie de l’Environnement et de l’Espace LPC2E CNRS-Université d’Orléans, F-45071, Orléans, France
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ABSTRACT

Using data from the Large European Array for Pulsars (LEAP), and the Effelsberg tele-
scope, we study the scintillation parameters of the millisecond pulsar PSR J0613�0200 over
a 7 year timespan. The “secondary spectrum” – the 2D power spectrum of scintillation –
presents the scattered power as a function of time delay, and contains the relative velocities
of the pulsar, observer, and scattering material. We detect a persistent parabolic scintillation
arc, suggesting scattering is dominated by a thin, anisotropic region. The scattering is poorly
described by a simple exponential tail, with excess power at high delays; we measure sig-
nificant, detectable scattered power at times out to ⇠ 5µs, and measure the bulk scattering
delay to be between 50 to 200 ns with particularly strong scattering throughout 2013. These
delays are too small to detect a change of the pulse profile shape, yet they would change the
times-of-arrival as measured through pulsar timing. The arc curvature varies annually, and is
well fit by a one-dimensional scattering screen ⇠ 40% of the way towards the pulsar, with a
changing orientation during the increased scattering in 2013. Effects of uncorrected scatter-
ing will introduce time delays correlated over time in individual pulsars, and may need to be
considered in gravitational wave analyses. Pulsar timing programs would benefit from simul-
taneously recording in a way that scintillation can be resolved, in order to monitor the variable
time delays caused by multipath propagation.

1 INTRODUCTION

Radio emission from pulsars experiences several propagation ef-
fects from the ionised interstellar medium (ISM), as the index
of refraction varies with electron density and frequency. The sig-
nal acquires a group delay Dt, known as dispersion, scaling as
Dt µ DMn�2, where DM is the integrated column density of free
electrons, and n is the observing frequency. Spatial variations in
the electron density result in multi-path propagation, with deflected
paths acquiring a geometric time delay from the path-length differ-
ence compared to the direct line-of-sight. When these delays are
large (compared to the pulse duration), it is observed as scattering,

a one-sided broadening of pulses often resembling an exponential
tail. When these delays are small, we observe it as scintillation, the
constructive and destructive interference of different deflected im-
ages at the observer, resulting in a time and frequency dependence
of the observed flux. These delays are steeper in frequency than
dispersion, and are expected to scale roughly as t ⇠ n�4.

One of the central goals of pulsar timing is to directly de-
tect gravitational waves, in a so-called pulsar timing array (Hobbs
2013, Desvignes et al. 2016, Verbiest et al. 2016, Arzoumanian
et al. 2018). The most stable pulsars are observed on weekly to
monthly cadence over many years, and ⇠nHz gravitational waves
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Interstellar delays of J0613-0200 with LEAP 5

Figure 1. Top: Dynamic Spectra of 5 observations around the same time of year, to have comparable contributions from the Earth’s velocity. The colourbar
extends from 2s below the mean to 5s above. Bottom: Corresponding secondary spectra, with a logarithmic colourbar extending three orders of magnitude.
Clear arcs with noticeable localised clumps of power are seen, these correspond to prominent diagonal features in the above dynamic spectra. The observation
from 2013 is anomalous, showing extremely fine stripes in the dynamic spectrum, corresponding to power at large time delays.

delay through the expectation value of t , computed as

hti=
R T

0 t|I(t)|2dt
R T

0 |I(t)|2dt
, (24)

where T = 8µs, defined by our choice of channelisation.
Artefacts in the dynamic spectrum, such as RFI, phasing im-

perfections, and the window function lead to correlated features
in the secondary spectrum. As such, the noise properties are not al-
ways well behaved, and direct error propagation underestimates the
error on hti. We estimate our errors directly from the cumulative
function in equation (24); at high enough T the integral plateaus,
with residual variations caused by the effect of integrating noise in
the secondary spectrum. We take the mean and standard deviation
of equation (24) between T = 4 � 8 µs as our measurement and
error of hti respectively.

4.4 ”Timing” a convolved template

To illustrate the effects of scattering on a profile, we can di-
rectly convolve our measure of the amplitude of gI(t) into a
template profile and measure the time offset using the standard
Fourier template-matching algorithm outlined in the appendix of

Taylor (1992). We create an analytic template using the standard
psrchive tool paas (Hotan et al. 2004), fitting the profile with a
series of von Mises functions, and interpolate the solution to have
the equivalent 31.25 ns bins of our measured |I(t)|2. We convolve
the two, and measure the relative time delay between the convolved
template against the original one. Figure 2 shows this convolution
applied to one of our observations. The measured time delay in this
way agrees perfectly with the method in the previous section; tim-
ing recovers the shift correctly, even when the effects are not visibly
noticeable.

We note again that this is not precisely the intensity impulse
response, but rather its autocorrelation, but it is close enough in
amplitude to demonstrate that the convolved template is visually
identical (with residuals at the 0.1% level after aligning the tem-
plate), yet is measurably delayed. In addition, |I(t)|2 is noticeably
clumpy and poorly described by an exponential, even after being
effectively smoothed by the autocorrelation.

4.5 Inferred time delay from the frequency ACF

A standard way to infer the time delays from scattering is to con-
struct the auto-correlation functions R(Dn) = (I ⇤ I)(Dn). Fitting
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5Station de radioastronomie de Nançay, Observatoire de Paris, PSL Research University, CNRS/INSU F-18330 Nançay, France
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ABSTRACT

Using data from the Large European Array for Pulsars (LEAP), and the Effelsberg tele-
scope, we study the scintillation parameters of the millisecond pulsar PSR J0613�0200 over
a 7 year timespan. The “secondary spectrum” – the 2D power spectrum of scintillation –
presents the scattered power as a function of time delay, and contains the relative velocities
of the pulsar, observer, and scattering material. We detect a persistent parabolic scintillation
arc, suggesting scattering is dominated by a thin, anisotropic region. The scattering is poorly
described by a simple exponential tail, with excess power at high delays; we measure sig-
nificant, detectable scattered power at times out to ⇠ 5µs, and measure the bulk scattering
delay to be between 50 to 200 ns with particularly strong scattering throughout 2013. These
delays are too small to detect a change of the pulse profile shape, yet they would change the
times-of-arrival as measured through pulsar timing. The arc curvature varies annually, and is
well fit by a one-dimensional scattering screen ⇠ 40% of the way towards the pulsar, with a
changing orientation during the increased scattering in 2013. Effects of uncorrected scatter-
ing will introduce time delays correlated over time in individual pulsars, and may need to be
considered in gravitational wave analyses. Pulsar timing programs would benefit from simul-
taneously recording in a way that scintillation can be resolved, in order to monitor the variable
time delays caused by multipath propagation.

1 INTRODUCTION

Radio emission from pulsars experiences several propagation ef-
fects from the ionised interstellar medium (ISM), as the index
of refraction varies with electron density and frequency. The sig-
nal acquires a group delay Dt, known as dispersion, scaling as
Dt µ DMn�2, where DM is the integrated column density of free
electrons, and n is the observing frequency. Spatial variations in
the electron density result in multi-path propagation, with deflected
paths acquiring a geometric time delay from the path-length differ-
ence compared to the direct line-of-sight. When these delays are
large (compared to the pulse duration), it is observed as scattering,

a one-sided broadening of pulses often resembling an exponential
tail. When these delays are small, we observe it as scintillation, the
constructive and destructive interference of different deflected im-
ages at the observer, resulting in a time and frequency dependence
of the observed flux. These delays are steeper in frequency than
dispersion, and are expected to scale roughly as t ⇠ n�4.

One of the central goals of pulsar timing is to directly de-
tect gravitational waves, in a so-called pulsar timing array (Hobbs
2013, Desvignes et al. 2016, Verbiest et al. 2016, Arzoumanian
et al. 2018). The most stable pulsars are observed on weekly to
monthly cadence over many years, and ⇠nHz gravitational waves
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Figure 7. Secondary spectra of our roughly bi-weekly monitoring campaign with Effelsberg, with a logarithmic colourbar extending three orders of magnitude.
Power can be seen to travel from left to right along the parabola, most evident by following the power in the last six panels. The arc curvature does not abruptly
change between observations, despite being at random orbital phases, suggesting that the scattering screen resulting in these arcs is not very sensitive to the
pulsar’s orbit.
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ABSTRACT

Using data from the Large European Array for Pulsars (LEAP), and the Effelsberg tele-
scope, we study the scintillation parameters of the millisecond pulsar PSR J0613�0200 over
a 7 year timespan. The “secondary spectrum” – the 2D power spectrum of scintillation –
presents the scattered power as a function of time delay, and contains the relative velocities
of the pulsar, observer, and scattering material. We detect a persistent parabolic scintillation
arc, suggesting scattering is dominated by a thin, anisotropic region. The scattering is poorly
described by a simple exponential tail, with excess power at high delays; we measure sig-
nificant, detectable scattered power at times out to ⇠ 5µs, and measure the bulk scattering
delay to be between 50 to 200 ns with particularly strong scattering throughout 2013. These
delays are too small to detect a change of the pulse profile shape, yet they would change the
times-of-arrival as measured through pulsar timing. The arc curvature varies annually, and is
well fit by a one-dimensional scattering screen ⇠ 40% of the way towards the pulsar, with a
changing orientation during the increased scattering in 2013. Effects of uncorrected scatter-
ing will introduce time delays correlated over time in individual pulsars, and may need to be
considered in gravitational wave analyses. Pulsar timing programs would benefit from simul-
taneously recording in a way that scintillation can be resolved, in order to monitor the variable
time delays caused by multipath propagation.

1 INTRODUCTION

Radio emission from pulsars experiences several propagation ef-
fects from the ionised interstellar medium (ISM), as the index
of refraction varies with electron density and frequency. The sig-
nal acquires a group delay Dt, known as dispersion, scaling as
Dt µ DMn�2, where DM is the integrated column density of free
electrons, and n is the observing frequency. Spatial variations in
the electron density result in multi-path propagation, with deflected
paths acquiring a geometric time delay from the path-length differ-
ence compared to the direct line-of-sight. When these delays are
large (compared to the pulse duration), it is observed as scattering,

a one-sided broadening of pulses often resembling an exponential
tail. When these delays are small, we observe it as scintillation, the
constructive and destructive interference of different deflected im-
ages at the observer, resulting in a time and frequency dependence
of the observed flux. These delays are steeper in frequency than
dispersion, and are expected to scale roughly as t ⇠ n�4.

One of the central goals of pulsar timing is to directly de-
tect gravitational waves, in a so-called pulsar timing array (Hobbs
2013, Desvignes et al. 2016, Verbiest et al. 2016, Arzoumanian
et al. 2018). The most stable pulsars are observed on weekly to
monthly cadence over many years, and ⇠nHz gravitational waves
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Status
• There is no detection yet

• Data suggest a “common red noise process” seen by EPTA ,Nanograv and PPTA

But what is it? – A hint of GWs?

• It could be similar intrinsic noise in (some) pulsars

• It could be the extrinsic (non-GW) sources

For a GW background, we need to see the HD-correlation.

Eventually, we want to see single sources.

In both cases, we need more sensitivity and better data.

You can/must get sensitivity in two ways: bigger telescopes and more pulsars!



Pulsar Timing Array Experiments

See Verbiest et al. (2016) and Lentati et al. (2016)

First data release contains data of 49 millisecond pulsars

Several frequencies, cadence up to 1 per 1-2 weeks

Legacy data sets span back 25 years



See Verbiest et al. (2016) and Lentati et al. (2016)

First data release contains data of 49 millisecond pulsars

Several frequencies, cadence up to 1 per 1-2 weeks

Legacy data sets span back 25 years
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Future

Future steps

New PTA collaborations are stemming (such as the Indian PTA with the GMRT and 

the Ooty telescope) and new extraordinary facilities are being built or finalized 

Jeff Dai skatelescope.org

FAST

MeerKAT GMRT
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More sensitivity is available

31 of 44

EPTA: LEAP

Overview of the results

Bassa et al., MNRAS 2016; Liu et al., MNRAS 2017

• ERC grant (P.I. Kramer)

• Offline, coherent combination of the 
EPTA telescopes

• 194-m equivalent telescope

• S/N
LEAP
 = Σ S/N

i

Bassa et al., 2016

PSR J1022+1001

LEAP: Combining EU telescopes to form equivalent 194-m dish FAST: 2 x Arecibo 

MeerKAT: SKA-precursor - 7 x Parkes



– (64+2) x S-band receivers and digitisers
– Beamformer (~1,000 beams, dep on config.)
– HPC hardware and software for pulsars & 

transients
– Storage space (~3.5 PB)
– Close collaborating with South Africa
– 3000h of dedicated MPIfR time
– Transient and pulsars commensally with 

polarization imaging & spectroscopy

MPIfR systems for MeerKAT

~1000 beams – new territory!
36 GB/s or 127 TB/h
or 3 PB/day.

April 20, 2021 7:44 output
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beams are represented by ellipses with colors normalized by their S/N and plotted in the right panel of
Figure 9 according to their sky position. The comparison shows the power distribution of the sky is in high
agreement with the simulated PSF including the complex structure at the outer region of the beam shape.
We note that there is a small position o↵set of ⇠0.796 arcsecond in the beamformed data probably due to
a minor phasing error.

Fig. 9. Verification of the beam shape: The image on the left is the simulated PSF covered by a tiling with the colour bar

representing the relative gain of the beam. An overlap ratio of 0.996 was used for the purpose of supersampling the PSF. The

image on the right is the power distribution of the sky based on a real observation beamformed using the same tiling, array

configuration and boresight pointing. The ellipses represent the beams and the color is normalized according to their S/N.

5.4.4. Tracking the change of the beam shape and the tiling

The third test performed was the verification of the change of the beam shape and the tiling by tracking
variations in S/N of 47 Tucanae pulsars in multiple beams. There was no re-tiling during the 4-hour
observation, so the e�ciency of the tiling was expected to vary due to the changes of the beam shape as a
function of time as discussed in Section 4.3 and illustrated in Figure 3. As a result, the relative distances
between a pulsar and the surrounding beams also change which manifests in their S/N. By simulating the
evolution of the tiling, we can predict the trend of the change of the S/N of those beams and verify them
with the data.

To perform this test, the observation was divided into 4, 1-hour segments and the surrounding beams
of each pulsar were folded using the known ephemeris. To mitigate temporal variations due to interstellar
scintillation, the S/N of the surrounding beam was normalised by the S/N of the corresponding tracking
beam pointing directly to the respective pulsar. The result for the surrounding beams of pulsar J0024-
7204Q is plotted in the top panel of Figure 10. The simulated packing of the beams at the start and the
end of the observation are plotted in the bottom panels of Figure 10. The black dots in the low panels
indicate the known location of pulsar J0024-7204Q and the beams are rotating clockwise with time.

The result from the observation is in overall agreement with the expectation from the tiling simulation.
The S/N of beams 95, 119, 117 and 97 changed as expected with the changing distance to the pulsar as
shown in the bottom panels. However, We note that the first and second segments of beams 73 and 141 are
not consistent with the expectation. This is likely due to two factors. Firstly, these beams are the furthest
from the pulsar and as discussed in Section 4.1 the elliptical beam approximation is poor at lower response

Chen et al. (submitted)

S-Band receivers are ideal for high-precision timing to beat ISM effects!



Fundamental Physics in Radio Astronomy
Max-Planck-Institut für Radioastronomie

When are we there?
(Taylor et al. 2016)

Since 2015



Fundamental Physics in Radio Astronomy
Max-Planck-Institut für Radioastronomie

When are we there?
(Taylor et al. 2016)

Since 2015

MeerTime MSP Census 11

2010 2020 2030

0
1

0
2

0

yr
S

/N

IPTA-125

MK-89

EPTA-42

NG-47

PPTA-26

Figure 5: Comparison of PTA sensitivity to the cross-
correlated component of the GW background (solid lines)
and the uncorrelated signal (dashed lines), using the cur-
rent MeerTime timing programme with 76 pulsars (blue
lines), the EPTA programme with 42 pulsars (orange lines),
the NANOGrav programme with 47 sources (red lines), the
PPTA with 26 (pink lines), or the IPTA as the union of the
four (black lines).

parameters from the European Pulsar Timing Array (EPTA;
Desvignes et al., 2016), NANOGrav (Alam et al., 2020), and
the PPTA (Kerr et al., 2020) to form a representative sample
of the IPTA. For sources in multiple PTAs, the data set
with the longest time span is used. We show how the the
S/N for this background increases with time in Figure 5. For
the NANOGrav sensitivity curves, we have assumed that the
Arecibo timing programme ceased in August 2020 and the
pulsars are not observed elsewhere, which demonstrates the
importance of Arecibo to international pulsar timing e�orts.
The modelling includes red noise in the sensitivity estimates,
for pulsars where it has been modelled. These calculations
imply the MPTA will be comparable in sensitivity to the
PPTA by 2023 and NANOGrav by ⇡ 2025. In less than four
years, theMPTA will be contributing to the IPTA e�ort. As
the MeerKAT timing array programme has observed a large
number of pulsars from its start, the sensitivity to the cross
correlated signal (dashed lines) is always comparable to the
auto-correlated signal. In contrast, the PPTA project includes
only 24 pulsars, and NANOGrav started out with a smaller
number of pulsars before gradually increasing in size starting
in 2009.

6 SUMMARY

In this work, we demonstrate the outstanding potential for
timing MSPs with this initial census, analysing polarization
properties, flux densities and spectral indices, and timing
precision. We present a dataset of nearly 4000 observations
of 189 pulsars, spanning 24 months, including polarization-
calibrated profiles and high-precision ToAs. Our timing sim-
ulations o�er simple predictions of future results including
timing parallax measurements, and we predict the MeerTime
PTA will be a major contributor to global PTA e�orts within
the next 5 years.

DATA AVAILABILITY

We have made available all polarization profiles, as shown in
Figures 6–26, with full phase resolution and 116 frequency
channels, as well as the table containing the analysis results.
Where?
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Frequency range of a Pulsar Timing Array (PTA)

FIG. 7: Strain power spectral density (psd) amplitude vs. frequency for various GW detectors and GW

sources (from [118]). See Fig. 6 caption for the meaning of various acronyms.

1993 First successful simulation of the head-on collision of two BHs, QNM ringing of the final BH ob-

served [15].

1993 Choptuik uses mesh refinement and finds evidence of universality and scaling in the gravitational

collapse of a massless scalar field [57].

1994 The “Binary Black Hole Grand Challenge Project”, the first large collaboration with the aim of

solving a specific NR problem (modeling a binary BH coalescence), is launched [58, 131].

1995 Through a conformal decomposition, a split of the extrinsic curvature and use of additional variables

Shibata & Nakamura [173] and Baumgarte & Shapiro (1998) [27] recast the ADM [19] Hamiltonian

equations as the so-called BSSN system.

1996 Brügmann [49] uses mesh refinement for simulations of BH spacetimes.

1998 First stable simulations of a single BH spacetime in fully 4 dimensional NR within a “characteristic

formulation” [92, 120], and two years later within a Cauchy formulation [10].

2000 The first general relativistic simulation of the merger of two NSs [174].

2005 Pretorius [160] achieves the first long-term stable numerical evolution of a BH binary.

2006 Soon afterwards, other groups independently succeed in evolving merging BH binaries using di↵erent

techniques [24, 51].
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Yi et al. 2014 
(PSR B1937+21)

Yardley et al. 2010 
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”High-Frequency Observations” via high cadence

Limit of optimal 
direction relative to 
J1713+0747, 0.01 
radian beam

Arzoumanian et al. 2014 
(all NANOGrav pulsars) (T. Dolch)
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Improving timing sensitivity in the microhertz frequency
regime: limits from PSR J1713+0747 on gravitational
waves produced by super-massive black-hole binaries
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ABSTRACT

We search for continuous gravitational waves (CGWs) produced by individual super-
massive black-hole binaries (SMBHBs) in circular orbits using high-cadence timing
observations of PSR J1713+0747. We observe this millisecond pulsar using the tele-
scopes in the European Pulsar Timing Array (EPTA) with an average cadence of
approximately 1.6 days over the period between April 2011 and July 2015, including
an approximately daily average between February 2013 and April 2014. The high-
cadence observations are used to improve the pulsar timing sensitivity across the GW
frequency range of 0.008 − 5 µHz. We use two algorithms in the analysis, including
a spectral fitting method and a Bayesian approach. For an independent comparison,
we also use a previously published Bayesian algorithm. We find that the Bayesian ap-
proaches provide optimal results and the timing observations of the pulsar place a 95
per cent upper limit on the sky-averaged strain amplitude of CGWs to be ! 3.5×10−13

at a reference frequency of 1 µHz. We also find a 95 per cent upper limit on the sky-
averaged strain amplitude of low-frequency CGWs to be ! 1.4× 10−14 at a reference
frequency of 20 nHz.

Key words: gravitational waves – stars: neutron – pulsars: individual: PSR
J1713+0747

c© 0000 The Authors

Perera et al. (2018): 

• EPTA observations with average cadence 
of 1.6 days over four years

• Sensitive to 8 nHz to 5 "Hz

• Limited direction and sensitivity

• But it shows what is possible!

We’ll get there. Let’s assume, we did…

GWs limits from J1713+0747 high-cadence data 7

Figure 2. The power spectrum of the timing residuals of the
pulsar given in Figure 1. The top panel shows the spectrum gen-
erated using the entire data set across the full data span, includ-
ing (solid curve) and excluding (dotted curve) the low frequency
WSRT 350 MHz data set. For the clarity of the plot, we shifted the
dotted curve down by a factor of 0.1. We note that both curves are
very similar, indicating that the GLSP method accounts for the
less weighted WSRT 350 MHz data correctly in the periodogram.
The middle panel represents the power spectrum generated us-
ing the timing residuals after subtracting the wave forms of the
red and stochastic DM power-law noise terms as described in
Section 3. The bottom panel shows the spectrum for the very-
high-cadence period of the observations after accounting for all
noise parameters in the timing model. Note that the upper bound
of the frequency range is extended beyond 3.5 µs with this very-
high-cadence observations. The y-axis represents the normalised
power (see Zechmeister & Kürster 2009, for details). The vertical
dashed and dashed-dotted lines represent the frequencies of 1 yr−1

and the orbital period of 67.8 d of the pulsar, respectively.

unmodelled signals and noise in the timing residuals, we
smooth the spectrum given in Figure 2 (top panel) and fit a
polynomial. We find that a third-order polynomial function
is sufficient to fit the data. We then scale this polynomial
by a factor α in power in the spectrum. It is determined
by simulating 104 data sets with TOAs having uncertainties
of 100 ns and cadence that matches the observed data. We
then obtain the power spectrum of each realisation and cal-
culate the mean power. We label the mean power of the ith
spectrum as mi. We increase α starting from 1 and count the
number of power spectra that have any power value greater
than αmi. We set a 1% false alarm rate and increase α until
the number of spectra satisfies this threshold. We find that

the best α for our data set is 10.1, and scale the polyno-
mial in power accordingly, in order to build the detection
threshold.

We then divide the frequency range of the observed
spectrum into 100 equal bins in log-space. We inject the pul-
sar and Earth terms at the same frequency, according to the
model given in Appendix A, for a given hs in the observed
TOAs (see Equation A1). We fit our timing model of the
pulsar to the new GW-injected TOAs using TEMPO2 and
obtain timing residuals. The power spectrum of the timing
residuals is then compared with the detection threshold at
the given frequency for a detection (see Yardley et al. 2010;
Yi et al. 2014, for more details). For each hs, we perform
1000 trials using randomly selected φS, θS, φ0, ψ, and i and
then count the number of detections (see Appendix A for
definitions of these parameters). We increase hs until the
signals of 95 per cent of trials are detected and then record
the particular hs as the upper limit for that given frequency
bin. We repeat this process for all frequency bins. This gives
the 95 per cent upper limit on the sky-averaged strain am-
plitude of CGWs produced by SMBHBs. We present our
upper limit curve in Figure 3 (see panel (a) and (b)). For
an optimal sky location, we assume all the SMBHBs are lo-
cated in the direction of the pulsar (±10◦ in the direction
of the pulsar), and repeat the same procedure as before. As
shown in the figure, the optimal upper limit is a factor of a
few better than the sky-averaged result.

4.2 Bayesian approach using TEMPONEST

The spectral fitting method described above is an incoher-
ent ad-hoc method that does not provide optimal results. It
does not include the noise processes of the pulsar (i.e. red
and DM stochastic noise) and it is not straightforward to im-
plement them in the model. If the noise modelling is included
in the analysis, then we need to fit for noise properties each
time the GW signal is injected and thus, the fitting method
becomes computationally inefficient. Therefore, we use the
Bayesian approach described in Lentati et al. (2014) where
the noise properties of the pulsar are constrained using the
“TEMPONEST” plugin. Since we assume that the GW is
produced by a SMBHB in a circular orbit, the signal that
can be embedded in the data of a single pulsar is sinusoidal.
Therefore, we fit for an additional simple sinusoidal signal
while fitting for white noise (i.e. EFACs and EQUADs), and
power-law stochastic DM and red noise parameters of the
pulsar simultaneously using “TEMPONEST”. The timing
model parameters are marginalised over during the fit (see
Lentati et al. 2014, for details about this procedure). The
plugin uses Bayesian inference tool MULTINEST to deter-
mine this joint parameter space and nested Markov Chain
Monte Carlo method for sampling (Feroz & Hobson 2008;
Feroz et al. 2009, 2013). We use log-uniform prior distribu-
tions for amplitudes of the power-law DM stochastic and
red noise, and for the frequency of the sinusoidal signal. We
use uniform prior distributions for spectral indices of the
power-law noise terms, and the amplitude and the phase of
the sinusoidal signal. The fit results in approximately 4×104

samples in the posterior probability distribution. Each sinu-
soidal signal sample includes information about its ampli-
tude (r(t)), initial phase (φ0), and the frequency (fg). We
then convert the amplitudes of these GW signals to strain

MNRAS 000, 000–000 (0000)
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Strong-Field Tests of Gravity Using Pulsars and Black Holes
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The sensitivity of the SKA enables a number of tests of theories of gravity. A Galactic Census of pulsars will
discover most of the active pulsars in the Galaxy beamed toward us. In this census will almost certainly be pulsar-
black hole binaries as well as pulsars orbiting the super-massive black hole in the Galactic centre. These systems

are unique in their capability to probe the ultra-strong field limit of relativistic gravity. These measurements can
be used to test the Cosmic Censorship Conjecture and the No-Hair theorem.

The large number of millisecond pulsars discovered with the SKA will also provide a dense array of precision

clocks on the sky. These clocks will act as the multiple arms of a huge gravitational wave detector, which can be
used to detect and measure the stochastic cosmological gravitational wave background that is expected from a
number of sources.

1. Was Einstein Right?

In astrophysical experiments we are passive ob-
servers who must derive all information simply
from photons (or particles or gravitons) received,
in contrast to procedures in terrestrial laborato-
ries where experimental set-up can be modified
and environment can be controlled. As a result,
terrestrial experiments are typically more pre-
cise and, most importantly, reproducible in any
other laboratory on Earth. However, when prob-
ing the limits of our understanding of gravita-
tional physics, we are interested in extreme con-
ditions that are not encountered on Earth. In
some cases, it is possible to perform the experi-

∗mkramer@jb.man.ac.uk
†dbacker@astro.berkeley.edu
‡cordes@astro.cornell.edu
§Joseph.Lazio@nrl.navy.mil
¶Basic research in radio astronomy at the NRL is sup-
ported by the Office of Naval Research.
‖stappers@astron.nl
∗∗simonj@physics.usyd.edu.au

ment from a space-based satellite observatory. In-
deed, solar system tests provide a number of very
stringent tests of Einstein’s theory of general rela-
tivity (GR) (see [38]), and to date GR has passed
all observational tests with flying colours.
Despite the success of GR, the fundamental

question remains as to whether Einstein has the
last word in our understanding of gravity or not
— a question that was also included as one of
eleven questions raised in “Connecting Quarks
with the Cosmos: Eleven Science Questions for
the New Century” [3]. The likely answer to this
question is that this is not the case, as physi-
cists attempt to formulate a theory of quantum
gravity. Quantum gravity would fuse the classi-
cal world of gravitation, currently best described
by GR, with the intricacies of quantum mechan-
ics. Quantum gravity would therefore account for
all of the known interactions and particles of the
physical world. Determining as to whether the
as yet accurate theory of GR describes the gravi-
tational interaction of the macroscopic world cor-

1

SKA-Key Science Case (2004)
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A PTA with the SKA

especially SKA-Mid 

With SKA we can do:
- pinpoint nHz-GW sources  
- GW astronomy
- study properties of graviton
- …

SKA1-MID

SKA1-LOW: 50 – 350 MHz

SKA1-Mid: 350 MHz – 24 GHz



The power of the pulsar term

The international pulsar timing array project 3

of this technique have been described numerous times in the literature (see Lorimer &

Kramer 2005 for an overview and Edwards, Hobbs & Manchester 2006 for full details of

the method). In brief, the observed pulse times-of-arrival (TOAs) are compared with a

prediction for the arrival times obtained with a model of the spin, astrometric and orbital

parameters of the pulsar and details of the pulse propagation through the interstellar

medium. The deviations between the predicted and the observed TOAs are known as
the pulsar ‘timing residuals’ and indicate unmodelled effects, i.e., Ri = (φi−Ni)/ν where

φi describes the time evolution of the pulse phase based on the model pulse frequency

(ν) and its derivatives. Ni is the nearest integer to φi. GW signals are not included in

a pulsar timing model and, hence, any such waves will induce residuals. Unfortunately,

the expected signal induced by GWs is small, with typical residuals being <100 ns.

The TOA precision achievable for the majority of pulsars is ∼ 1ms and most pulsars
show long-term timing irregularities that would make the detection of the expected GW

signal difficult or impossible (e.g. Hobbs, Lyne & Kramer 2006). However, a sub-set of

the pulsar population, the millisecond pulsars, have very high spin rates, much smaller

timing irregularities and can be observed with much greater TOA precision. Recent

observations of PSR J0437−4715 have shown that TOA precisions of ∼ 30 ns can be

achieved (see §4) and over 10 yr the root-mean-square (rms) timing residuals are 200 ns
(Verbiest et al. 2008).

In §2 of this paper we describe the induced timing residuals caused by GWs.

The expected sources of detectable GW signals are given in §3. We summarise the

International Pulsar Timing Array project in §4 and highlight future telescopes and

timing array projects in §5.

2. Induced timing residuals caused by gravitational waves

Sazhin (1978) and Detweiler (1979) first showed that a GW signal causes a fluctuation

in the observed pulse frequency δν/ν which affects the pulsar timing residuals at time

t from the initial observation as

R(t) = −
∫ t

0

δν(t)

ν
dt. (1)

The Doppler shift can be shown to have the form

δν

ν
= H ij(he

ij − hp
ij) (2)

where he
ij is the GW strain at the Earth at the time of observation, hp

ij the strain at the

pulsar when the electromagnetic pulse was emitted (typically ∼ 1000 yr ago) and H ij

is a geometrical term that depends upon the angle between the Earth, pulsar and GW

source. This equation was derived assuming a plane gravitational wave and is accurate

to first order in hij for all GW wavelengths. Note, this expression holds even if the

wave is not sinusoidal. Full details of the exact form of the induced residuals are given
by Hobbs et al. (2009a). Standard pulsar timing techniques absorb any low-frequency

GWs by fitting for the pulsar’s spin-down and so the time span of the data provides a

Remember Caterina’s talk:
• The timing residual is the integral over these variation over the duration of

the timing experiment:
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GWs by fitting for the pulsar’s spin-down and so the time span of the data provides a

With Doppler shift given by

geometry Earth pulsar
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ABSTRACT

General expressions for the expected timing residuals induced by gravitational wave (G-wave) emission from
a slowly evolving, eccentric, binary black hole system are derived here for the first time. These expressions are
used to search for the signature of G-waves emitted by the proposed supermassive binary black hole system in
3C 66B. We use data from long-term timing observations of the radio pulsar PSR B1855+09. For the case of a
circular orbit, the emitted G-waves should generate clearly detectable fluctuations in the pulse-arrival times of
PSR B1855+09. Since no G-waves are detected, the waveforms are used in a Monte Carlo analysis in order to
place limits on the mass and eccentricity of the proposed black hole system. The analysis presented here rules out
the adopted system with 95% confidence. The reported analysis also demonstrates several interesting features of
a G-wave detector based on pulsar timing.

Subject headings: black hole physics — gravitational waves — pulsars: general —
pulsars: individual (B1855+09)

1. INTRODUCTION

This work describes a general technique used to constrain
the properties of supermassive binary black hole (SBBH)
systems using pulsar-timing observations. This technique is
applied to the recently proposed SBBH system in 3C 66B
(Sudou et al. 2003; hereafter S03) using 7 yr of timing data
from the radio pulsar PSR B1855+09. Given the length of
the available data set and this pulsar’s low rms timing noise
(1.5 !s), these data are well suited for this analysis.

Expressions are derived for the expected timing residuals
induced by G-waves generated from two orbiting masses. The
effects of orbital eccentricity, viewing geometry, and post-
Newtonian orbital evolution are included. Since the resulting
waveforms are quasi-periodic, although not necessarily sinu-
soidal, a periodogram analysis together with harmonic sum-
ming can be used to search for the signature of G-waves in
pulsar-timing data. When this signature is detected, the de-
rived expressions can be used to determine the system’s chirp
mass and eccentricity. For a nondetection, these expression
can be used in a Monte Carlo analysis in order to place limits
on the properties of the proposed system.

In this work, the derived expressions are used to place limits
on the proposed SBBH system in 3C 66B, a nearby (z ¼ 0:02)
radio galaxy. S03 recently suggested that this galaxy may
contain a SBBH system with a current period of 1.05 yr, a
total mass of 5:4 ; 1010 M", and a mass ratio of 0.1. Such a
system will merge in #5 yr. Although it would be fortuitous to
catch such a system so close to coalescence, the reward for
directly detecting G-waves for the first time is large enough to
warrant a short investigation focused on this system.

Future work will place constraints on other known nearby
candidate SBBH systems. Lommen & Backer (2001) showed
that meaningful constraints could be placed on about a dozen
nearby sources, if pulsar timing can reach sensitivities of
100 ns. The residual expressions derived here can be used
to place limits on the chirp mass and eccentricity of these
systems. These expressions also show how the same G-wave
will affect multiple sources, thus allowing one to discriminate
between G-wave-induced and non–G-wave-induced timing
fluctuations.

Section 2 describes the expected signature of G-wave
emission from a general binary system; x 3 applies these re-
sults to the specific case of the proposed system in 3C 66B. The
observations of PSR B1855+09 used to search for G-waves
are described in x 4. Section 5 discusses the search tech-
niques employed as well as the Monte Carlo simulation used
to place limits on the mass and eccentricity of the system.
The results are discussed in x 6.

2. THE SIGNATURE OF A SBBH

The orbital motion of a SBBH system will generate gravi-
tational radiation. The emitted G-waves will induce periodic
oscillations in the arrival times of individual pulses from
radio pulsars. Given a model for the pulse arrival times in the
absence of G-waves, one can generate a time series of
‘‘residuals,’’ which are the observed pulse arrival times minus
the expected pulse arrival times. Ideally, the effects of known
accelerations are removed from the timing residuals, leaving
only the variations due to the presence of G-waves.

The emitted G-waves are described by two functions of
spacetime, hþ and h;, which correspond to the gravitational
wave strain of the two polarization modes of the radiation
field. As these waves pass between the Earth and a pulsar, the
observed timing residuals, R(t), will vary as (Estabrook &
Wahlquist 1975; Detweiler 1979)

R(t) ¼ 1

2
1þ cos !ð Þ rþ tð Þ cos 2 ð Þ þ r; tð Þ sin 2 ð Þ½ (; ð1Þ
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where t is time, ! is the opening angle between the G-wave
source and the pulsar relative to Earth,  is the G-wave
polarization angle, and the ‘‘+’’ and ‘‘;’’ refer to the two
G-wave polarization states. The functions rþ and r;, referred
to collectively as rþ;;, are related to the G-wave strain by

rþ;;(t) ¼ reþ;;(t)# r
p
þ;;(t); ð2Þ

reþ;;(t) ¼
Z t

0

heþ;;(") d"; ð3Þ

r
p
þ;;(t) ¼

Z t

0

h
p
þ;; " # d

c
1# cos !ð Þ

! "
d"; ð4Þ

where heþ;;(t) is the G-wave strain at Earth, h
p
þ;;(t) is the

gravitational wave strain at the pulsar, " is the time integration
variable, d is the distance between Earth and the pulsar, and c
is the speed of light. Note that the pulsar term, hpþ;;, is eval-
uated at the current time minus a geometric delay.

G-waves emitted by a system in a circular orbit (i.e., zero
eccentricity) will vary sinusoidally as a function of time, with
a frequency given by twice the orbital frequency. For eccentric
systems, the emitted waves will contain several harmonics of
the orbital frequency. The second harmonic will dominate at
low eccentricities, while the fundamental (i.e., the orbital)
frequency will dominate at high eccentricities. In general, the
period and eccentricity of a binary system will be decreas-
ing with time, because the system is radiating away energy
and angular momentum in G-waves. Hence, the frequencies
present in hþ;;(t) will vary with time. Since r eþ;; and r

p
þ;; may

be generated by hþ;;(t) at epochs separated by an extremely
long time interval, the frequency content of these terms may
differ significantly.

The G-wave strain, h(t), induced by a black hole binary can
be calculated using the standard weak-field approximation
applied to two orbiting point masses (Wahlquist 1987). The
expected residuals are found by integrating h(t) with respect to
time (see eqs. [2]–[4]):

reþ(t) ¼ # (t) A(t) cos (2$)# B(t) sin (2$)½ '; ð5Þ

re;(t) ¼ # (t) A(t) sin (2$)þ B(t) cos (2$)½ '; ð6Þ

# (t) ¼ M 5=3
c

D!1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# e(t)2

p

1þ e(t) cos %(t)½ '
; ð7Þ

where D is the distance to the source, $ is the orientation of
the line of nodes on the sky, !(t) is the orbital frequency, e(t)
is the eccentricity, %(t) is the orbital phase, and Mc is the
‘‘chirp mass,’’ defined as

Mc ¼ Mt
m1m2

M2
t

$ %3=5

; ð8Þ

where Mt ¼ m1 þ m2 and m1 and m2 are the masses of the
individual black holes. Note that all units from equation (5) on
are in ‘‘geometrized’’ units,5 where G ¼ c ¼ 1. A(t) and B(t)
are given by

A(t) ¼ 2e(t) sin %(t)½ ' cos %(t)# %n½ '2# cos i½ '2 sin %(t)# %n½ '2
n o

# 1

2
sin 2 %(t)# %n½ 'f gf1þ e(t) cos ½%(t)'g 3þ cos 2ið Þ½ ';

ð9Þ

B(t) ¼ 2 cos i cos 2 %(t)# %n½ 'f gþ e(t) cos ½%(t)# 2%n'ð Þ; ð10Þ

where i and %n are the orbital inclination angle and the value of
% at the line of nodes, respectively (Wahlquist 1987). Values
for %(t) and e(t) are given by the coupled differential equations
(Wahlquist 1987; Peters 1964)

d%

dt
¼ !(t)

1þ e(t) cos %(t)½ 'f g2

1# e tð Þ2
h i3=2 ; ð11Þ

de

dt
¼# 304

15
M 5=3

c !8=3
0 &#4

0

e tð Þ#29=19 1# e tð Þ2
h i3=2

1þ 121=304ð Þe tð Þ2
h i1181=2299 ;

ð12Þ

where !0 is the initial value of !(t) and &0 is a constant that
depends on the initial eccentricity e0:

&0 ¼ 1# e20
& '

e
#12=19
0 1þ 121

304
e20

! "#870=2299

: ð13Þ

Here !(t) is given by

!(t) ¼ a0e tð Þ#18=19 1# e tð Þ2
h i3=2

1þ 121

304
e tð Þ2

! "#1305=2299

;

ð14Þ

where a0 is determined by the initial condition !(t ¼ 0) ¼ !0.
The above equations are accurate to first order in v=c and valid
only when both e(t) and !(t) vary slowly with time. The
expressions for rpþ;; are identical to those for r

e
þ;;. Note that r

p
þ;;

is evaluated at an earlier time than reþ;; (see eqs. [3] and [4]).

3. APPLICATION TO 3C 66B

S03 suggest the presence of a 1:3 ; 1010M( black hole bi-
nary in the radio galaxy 3C 66B. Their VLBI measurements at
both 8.4 and 2.3 GHz show the elliptical motion of a radio
core with a period of 1:05 ) 0:03 yr at epoch 2002. Normally,
this motion would be attributed to the precession of a jet (e.g.,
Katz 1997), but in this case, S03 argue that the observed
motion is due to the orbit of the jet’s source, a supermassive
black hole, around a supermassive black hole companion.
Concerning these claims, we note several issues. First, only a
single orbit is observed, i.e., the elliptical motion has not yet
been shown to be repeatable. Second, S03 do not address the
possibility that the observed elliptical motion, which is per-
ilously close to having a 1 yr period, is somehow the result of
the Earth’s motion around the Sun. Third, they suggest that the
system will merge in about 5 yr. Hence, the a priori probability
that we have ‘‘caught’’ such a system in the act of coalescence
is very low. Nonetheless, the proposed system would generate5 In geometrized units, mass and distance are in units of time.
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ABSTRACT

General expressions for the expected timing residuals induced by gravitational wave (G-wave) emission from
a slowly evolving, eccentric, binary black hole system are derived here for the first time. These expressions are
used to search for the signature of G-waves emitted by the proposed supermassive binary black hole system in
3C 66B. We use data from long-term timing observations of the radio pulsar PSR B1855+09. For the case of a
circular orbit, the emitted G-waves should generate clearly detectable fluctuations in the pulse-arrival times of
PSR B1855+09. Since no G-waves are detected, the waveforms are used in a Monte Carlo analysis in order to
place limits on the mass and eccentricity of the proposed black hole system. The analysis presented here rules out
the adopted system with 95% confidence. The reported analysis also demonstrates several interesting features of
a G-wave detector based on pulsar timing.

Subject headings: black hole physics — gravitational waves — pulsars: general —
pulsars: individual (B1855+09)

1. INTRODUCTION

This work describes a general technique used to constrain
the properties of supermassive binary black hole (SBBH)
systems using pulsar-timing observations. This technique is
applied to the recently proposed SBBH system in 3C 66B
(Sudou et al. 2003; hereafter S03) using 7 yr of timing data
from the radio pulsar PSR B1855+09. Given the length of
the available data set and this pulsar’s low rms timing noise
(1.5 !s), these data are well suited for this analysis.

Expressions are derived for the expected timing residuals
induced by G-waves generated from two orbiting masses. The
effects of orbital eccentricity, viewing geometry, and post-
Newtonian orbital evolution are included. Since the resulting
waveforms are quasi-periodic, although not necessarily sinu-
soidal, a periodogram analysis together with harmonic sum-
ming can be used to search for the signature of G-waves in
pulsar-timing data. When this signature is detected, the de-
rived expressions can be used to determine the system’s chirp
mass and eccentricity. For a nondetection, these expression
can be used in a Monte Carlo analysis in order to place limits
on the properties of the proposed system.

In this work, the derived expressions are used to place limits
on the proposed SBBH system in 3C 66B, a nearby (z ¼ 0:02)
radio galaxy. S03 recently suggested that this galaxy may
contain a SBBH system with a current period of 1.05 yr, a
total mass of 5:4 ; 1010 M", and a mass ratio of 0.1. Such a
system will merge in #5 yr. Although it would be fortuitous to
catch such a system so close to coalescence, the reward for
directly detecting G-waves for the first time is large enough to
warrant a short investigation focused on this system.

Future work will place constraints on other known nearby
candidate SBBH systems. Lommen & Backer (2001) showed
that meaningful constraints could be placed on about a dozen
nearby sources, if pulsar timing can reach sensitivities of
100 ns. The residual expressions derived here can be used
to place limits on the chirp mass and eccentricity of these
systems. These expressions also show how the same G-wave
will affect multiple sources, thus allowing one to discriminate
between G-wave-induced and non–G-wave-induced timing
fluctuations.

Section 2 describes the expected signature of G-wave
emission from a general binary system; x 3 applies these re-
sults to the specific case of the proposed system in 3C 66B. The
observations of PSR B1855+09 used to search for G-waves
are described in x 4. Section 5 discusses the search tech-
niques employed as well as the Monte Carlo simulation used
to place limits on the mass and eccentricity of the system.
The results are discussed in x 6.

2. THE SIGNATURE OF A SBBH

The orbital motion of a SBBH system will generate gravi-
tational radiation. The emitted G-waves will induce periodic
oscillations in the arrival times of individual pulses from
radio pulsars. Given a model for the pulse arrival times in the
absence of G-waves, one can generate a time series of
‘‘residuals,’’ which are the observed pulse arrival times minus
the expected pulse arrival times. Ideally, the effects of known
accelerations are removed from the timing residuals, leaving
only the variations due to the presence of G-waves.

The emitted G-waves are described by two functions of
spacetime, hþ and h;, which correspond to the gravitational
wave strain of the two polarization modes of the radiation
field. As these waves pass between the Earth and a pulsar, the
observed timing residuals, R(t), will vary as (Estabrook &
Wahlquist 1975; Detweiler 1979)

R(t) ¼ 1

2
1þ cos !ð Þ rþ tð Þ cos 2 ð Þ þ r; tð Þ sin 2 ð Þ½ (; ð1Þ
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where t is time, ! is the opening angle between the G-wave
source and the pulsar relative to Earth,  is the G-wave
polarization angle, and the ‘‘+’’ and ‘‘;’’ refer to the two
G-wave polarization states. The functions rþ and r;, referred
to collectively as rþ;;, are related to the G-wave strain by

rþ;;(t) ¼ reþ;;(t)# r
p
þ;;(t); ð2Þ

reþ;;(t) ¼
Z t

0

heþ;;(") d"; ð3Þ

r
p
þ;;(t) ¼

Z t

0

h
p
þ;; " # d

c
1# cos !ð Þ

! "
d"; ð4Þ

where heþ;;(t) is the G-wave strain at Earth, h
p
þ;;(t) is the

gravitational wave strain at the pulsar, " is the time integration
variable, d is the distance between Earth and the pulsar, and c
is the speed of light. Note that the pulsar term, hpþ;;, is eval-
uated at the current time minus a geometric delay.

G-waves emitted by a system in a circular orbit (i.e., zero
eccentricity) will vary sinusoidally as a function of time, with
a frequency given by twice the orbital frequency. For eccentric
systems, the emitted waves will contain several harmonics of
the orbital frequency. The second harmonic will dominate at
low eccentricities, while the fundamental (i.e., the orbital)
frequency will dominate at high eccentricities. In general, the
period and eccentricity of a binary system will be decreas-
ing with time, because the system is radiating away energy
and angular momentum in G-waves. Hence, the frequencies
present in hþ;;(t) will vary with time. Since r eþ;; and r

p
þ;; may

be generated by hþ;;(t) at epochs separated by an extremely
long time interval, the frequency content of these terms may
differ significantly.

The G-wave strain, h(t), induced by a black hole binary can
be calculated using the standard weak-field approximation
applied to two orbiting point masses (Wahlquist 1987). The
expected residuals are found by integrating h(t) with respect to
time (see eqs. [2]–[4]):

reþ(t) ¼ # (t) A(t) cos (2$)# B(t) sin (2$)½ '; ð5Þ

re;(t) ¼ # (t) A(t) sin (2$)þ B(t) cos (2$)½ '; ð6Þ

# (t) ¼ M 5=3
c

D!1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# e(t)2

p

1þ e(t) cos %(t)½ '
; ð7Þ

where D is the distance to the source, $ is the orientation of
the line of nodes on the sky, !(t) is the orbital frequency, e(t)
is the eccentricity, %(t) is the orbital phase, and Mc is the
‘‘chirp mass,’’ defined as

Mc ¼ Mt
m1m2

M2
t

$ %3=5

; ð8Þ

where Mt ¼ m1 þ m2 and m1 and m2 are the masses of the
individual black holes. Note that all units from equation (5) on
are in ‘‘geometrized’’ units,5 where G ¼ c ¼ 1. A(t) and B(t)
are given by

A(t) ¼ 2e(t) sin %(t)½ ' cos %(t)# %n½ '2# cos i½ '2 sin %(t)# %n½ '2
n o

# 1

2
sin 2 %(t)# %n½ 'f gf1þ e(t) cos ½%(t)'g 3þ cos 2ið Þ½ ';

ð9Þ

B(t) ¼ 2 cos i cos 2 %(t)# %n½ 'f gþ e(t) cos ½%(t)# 2%n'ð Þ; ð10Þ

where i and %n are the orbital inclination angle and the value of
% at the line of nodes, respectively (Wahlquist 1987). Values
for %(t) and e(t) are given by the coupled differential equations
(Wahlquist 1987; Peters 1964)

d%

dt
¼ !(t)

1þ e(t) cos %(t)½ 'f g2

1# e tð Þ2
h i3=2 ; ð11Þ

de

dt
¼# 304

15
M 5=3

c !8=3
0 &#4

0

e tð Þ#29=19 1# e tð Þ2
h i3=2

1þ 121=304ð Þe tð Þ2
h i1181=2299 ;

ð12Þ

where !0 is the initial value of !(t) and &0 is a constant that
depends on the initial eccentricity e0:

&0 ¼ 1# e20
& '

e
#12=19
0 1þ 121

304
e20

! "#870=2299

: ð13Þ

Here !(t) is given by

!(t) ¼ a0e tð Þ#18=19 1# e tð Þ2
h i3=2

1þ 121

304
e tð Þ2

! "#1305=2299

;

ð14Þ

where a0 is determined by the initial condition !(t ¼ 0) ¼ !0.
The above equations are accurate to first order in v=c and valid
only when both e(t) and !(t) vary slowly with time. The
expressions for rpþ;; are identical to those for r

e
þ;;. Note that r

p
þ;;

is evaluated at an earlier time than reþ;; (see eqs. [3] and [4]).

3. APPLICATION TO 3C 66B

S03 suggest the presence of a 1:3 ; 1010M( black hole bi-
nary in the radio galaxy 3C 66B. Their VLBI measurements at
both 8.4 and 2.3 GHz show the elliptical motion of a radio
core with a period of 1:05 ) 0:03 yr at epoch 2002. Normally,
this motion would be attributed to the precession of a jet (e.g.,
Katz 1997), but in this case, S03 argue that the observed
motion is due to the orbit of the jet’s source, a supermassive
black hole, around a supermassive black hole companion.
Concerning these claims, we note several issues. First, only a
single orbit is observed, i.e., the elliptical motion has not yet
been shown to be repeatable. Second, S03 do not address the
possibility that the observed elliptical motion, which is per-
ilously close to having a 1 yr period, is somehow the result of
the Earth’s motion around the Sun. Third, they suggest that the
system will merge in about 5 yr. Hence, the a priori probability
that we have ‘‘caught’’ such a system in the act of coalescence
is very low. Nonetheless, the proposed system would generate5 In geometrized units, mass and distance are in units of time.
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ABSTRACT

General expressions for the expected timing residuals induced by gravitational wave (G-wave) emission from
a slowly evolving, eccentric, binary black hole system are derived here for the first time. These expressions are
used to search for the signature of G-waves emitted by the proposed supermassive binary black hole system in
3C 66B. We use data from long-term timing observations of the radio pulsar PSR B1855+09. For the case of a
circular orbit, the emitted G-waves should generate clearly detectable fluctuations in the pulse-arrival times of
PSR B1855+09. Since no G-waves are detected, the waveforms are used in a Monte Carlo analysis in order to
place limits on the mass and eccentricity of the proposed black hole system. The analysis presented here rules out
the adopted system with 95% confidence. The reported analysis also demonstrates several interesting features of
a G-wave detector based on pulsar timing.

Subject headings: black hole physics — gravitational waves — pulsars: general —
pulsars: individual (B1855+09)

1. INTRODUCTION

This work describes a general technique used to constrain
the properties of supermassive binary black hole (SBBH)
systems using pulsar-timing observations. This technique is
applied to the recently proposed SBBH system in 3C 66B
(Sudou et al. 2003; hereafter S03) using 7 yr of timing data
from the radio pulsar PSR B1855+09. Given the length of
the available data set and this pulsar’s low rms timing noise
(1.5 !s), these data are well suited for this analysis.

Expressions are derived for the expected timing residuals
induced by G-waves generated from two orbiting masses. The
effects of orbital eccentricity, viewing geometry, and post-
Newtonian orbital evolution are included. Since the resulting
waveforms are quasi-periodic, although not necessarily sinu-
soidal, a periodogram analysis together with harmonic sum-
ming can be used to search for the signature of G-waves in
pulsar-timing data. When this signature is detected, the de-
rived expressions can be used to determine the system’s chirp
mass and eccentricity. For a nondetection, these expression
can be used in a Monte Carlo analysis in order to place limits
on the properties of the proposed system.

In this work, the derived expressions are used to place limits
on the proposed SBBH system in 3C 66B, a nearby (z ¼ 0:02)
radio galaxy. S03 recently suggested that this galaxy may
contain a SBBH system with a current period of 1.05 yr, a
total mass of 5:4 ; 1010 M", and a mass ratio of 0.1. Such a
system will merge in #5 yr. Although it would be fortuitous to
catch such a system so close to coalescence, the reward for
directly detecting G-waves for the first time is large enough to
warrant a short investigation focused on this system.

Future work will place constraints on other known nearby
candidate SBBH systems. Lommen & Backer (2001) showed
that meaningful constraints could be placed on about a dozen
nearby sources, if pulsar timing can reach sensitivities of
100 ns. The residual expressions derived here can be used
to place limits on the chirp mass and eccentricity of these
systems. These expressions also show how the same G-wave
will affect multiple sources, thus allowing one to discriminate
between G-wave-induced and non–G-wave-induced timing
fluctuations.

Section 2 describes the expected signature of G-wave
emission from a general binary system; x 3 applies these re-
sults to the specific case of the proposed system in 3C 66B. The
observations of PSR B1855+09 used to search for G-waves
are described in x 4. Section 5 discusses the search tech-
niques employed as well as the Monte Carlo simulation used
to place limits on the mass and eccentricity of the system.
The results are discussed in x 6.

2. THE SIGNATURE OF A SBBH

The orbital motion of a SBBH system will generate gravi-
tational radiation. The emitted G-waves will induce periodic
oscillations in the arrival times of individual pulses from
radio pulsars. Given a model for the pulse arrival times in the
absence of G-waves, one can generate a time series of
‘‘residuals,’’ which are the observed pulse arrival times minus
the expected pulse arrival times. Ideally, the effects of known
accelerations are removed from the timing residuals, leaving
only the variations due to the presence of G-waves.

The emitted G-waves are described by two functions of
spacetime, hþ and h;, which correspond to the gravitational
wave strain of the two polarization modes of the radiation
field. As these waves pass between the Earth and a pulsar, the
observed timing residuals, R(t), will vary as (Estabrook &
Wahlquist 1975; Detweiler 1979)

R(t) ¼ 1

2
1þ cos !ð Þ rþ tð Þ cos 2 ð Þ þ r; tð Þ sin 2 ð Þ½ (; ð1Þ

1 California Institute of Technology, Jet Propulsion Laboratory, 4800 Oak
Grove Drive, Pasadena, CA 91109.

2 Franklin and Marshall College, Department of Physics and Astronomy,
PO Box 3003, Lancaster, PA 17604.

3 California Institute of Technology, 1500 California Boulevard, Pasadena
CA, 91125.

4 The LIGO Laboratory, California Institute of Technology, 1500
California Boulevard, Pasadena, CA 91125.
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where t is time, ! is the opening angle between the G-wave
source and the pulsar relative to Earth,  is the G-wave
polarization angle, and the ‘‘+’’ and ‘‘;’’ refer to the two
G-wave polarization states. The functions rþ and r;, referred
to collectively as rþ;;, are related to the G-wave strain by

rþ;;(t) ¼ reþ;;(t)# r
p
þ;;(t); ð2Þ

reþ;;(t) ¼
Z t

0

heþ;;(") d"; ð3Þ

r
p
þ;;(t) ¼

Z t

0

h
p
þ;; " # d

c
1# cos !ð Þ

! "
d"; ð4Þ

where heþ;;(t) is the G-wave strain at Earth, h
p
þ;;(t) is the

gravitational wave strain at the pulsar, " is the time integration
variable, d is the distance between Earth and the pulsar, and c
is the speed of light. Note that the pulsar term, hpþ;;, is eval-
uated at the current time minus a geometric delay.

G-waves emitted by a system in a circular orbit (i.e., zero
eccentricity) will vary sinusoidally as a function of time, with
a frequency given by twice the orbital frequency. For eccentric
systems, the emitted waves will contain several harmonics of
the orbital frequency. The second harmonic will dominate at
low eccentricities, while the fundamental (i.e., the orbital)
frequency will dominate at high eccentricities. In general, the
period and eccentricity of a binary system will be decreas-
ing with time, because the system is radiating away energy
and angular momentum in G-waves. Hence, the frequencies
present in hþ;;(t) will vary with time. Since r eþ;; and r

p
þ;; may

be generated by hþ;;(t) at epochs separated by an extremely
long time interval, the frequency content of these terms may
differ significantly.

The G-wave strain, h(t), induced by a black hole binary can
be calculated using the standard weak-field approximation
applied to two orbiting point masses (Wahlquist 1987). The
expected residuals are found by integrating h(t) with respect to
time (see eqs. [2]–[4]):

reþ(t) ¼ # (t) A(t) cos (2$)# B(t) sin (2$)½ '; ð5Þ

re;(t) ¼ # (t) A(t) sin (2$)þ B(t) cos (2$)½ '; ð6Þ

# (t) ¼ M 5=3
c

D!1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# e(t)2

p

1þ e(t) cos %(t)½ '
; ð7Þ

where D is the distance to the source, $ is the orientation of
the line of nodes on the sky, !(t) is the orbital frequency, e(t)
is the eccentricity, %(t) is the orbital phase, and Mc is the
‘‘chirp mass,’’ defined as

Mc ¼ Mt
m1m2

M2
t

$ %3=5

; ð8Þ

where Mt ¼ m1 þ m2 and m1 and m2 are the masses of the
individual black holes. Note that all units from equation (5) on
are in ‘‘geometrized’’ units,5 where G ¼ c ¼ 1. A(t) and B(t)
are given by

A(t) ¼ 2e(t) sin %(t)½ ' cos %(t)# %n½ '2# cos i½ '2 sin %(t)# %n½ '2
n o

# 1

2
sin 2 %(t)# %n½ 'f gf1þ e(t) cos ½%(t)'g 3þ cos 2ið Þ½ ';

ð9Þ

B(t) ¼ 2 cos i cos 2 %(t)# %n½ 'f gþ e(t) cos ½%(t)# 2%n'ð Þ; ð10Þ

where i and %n are the orbital inclination angle and the value of
% at the line of nodes, respectively (Wahlquist 1987). Values
for %(t) and e(t) are given by the coupled differential equations
(Wahlquist 1987; Peters 1964)

d%

dt
¼ !(t)

1þ e(t) cos %(t)½ 'f g2

1# e tð Þ2
h i3=2 ; ð11Þ

de

dt
¼# 304

15
M 5=3

c !8=3
0 &#4

0

e tð Þ#29=19 1# e tð Þ2
h i3=2

1þ 121=304ð Þe tð Þ2
h i1181=2299 ;

ð12Þ

where !0 is the initial value of !(t) and &0 is a constant that
depends on the initial eccentricity e0:

&0 ¼ 1# e20
& '

e
#12=19
0 1þ 121

304
e20

! "#870=2299

: ð13Þ

Here !(t) is given by

!(t) ¼ a0e tð Þ#18=19 1# e tð Þ2
h i3=2

1þ 121

304
e tð Þ2

! "#1305=2299

;

ð14Þ

where a0 is determined by the initial condition !(t ¼ 0) ¼ !0.
The above equations are accurate to first order in v=c and valid
only when both e(t) and !(t) vary slowly with time. The
expressions for rpþ;; are identical to those for r

e
þ;;. Note that r

p
þ;;

is evaluated at an earlier time than reþ;; (see eqs. [3] and [4]).

3. APPLICATION TO 3C 66B

S03 suggest the presence of a 1:3 ; 1010M( black hole bi-
nary in the radio galaxy 3C 66B. Their VLBI measurements at
both 8.4 and 2.3 GHz show the elliptical motion of a radio
core with a period of 1:05 ) 0:03 yr at epoch 2002. Normally,
this motion would be attributed to the precession of a jet (e.g.,
Katz 1997), but in this case, S03 argue that the observed
motion is due to the orbit of the jet’s source, a supermassive
black hole, around a supermassive black hole companion.
Concerning these claims, we note several issues. First, only a
single orbit is observed, i.e., the elliptical motion has not yet
been shown to be repeatable. Second, S03 do not address the
possibility that the observed elliptical motion, which is per-
ilously close to having a 1 yr period, is somehow the result of
the Earth’s motion around the Sun. Third, they suggest that the
system will merge in about 5 yr. Hence, the a priori probability
that we have ‘‘caught’’ such a system in the act of coalescence
is very low. Nonetheless, the proposed system would generate5 In geometrized units, mass and distance are in units of time.
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CONSTRAINING THE PROPERTIES OF SUPERMASSIVE BLACK HOLE SYSTEMS
USING PULSAR TIMING: APPLICATION TO 3C 66B

Fredrick A. Jenet,1 Andrea Lommen,2 Shane L. Larson,3 and Linqing Wen4

Received 2003 October 10; accepted 2004 January 20

ABSTRACT

General expressions for the expected timing residuals induced by gravitational wave (G-wave) emission from
a slowly evolving, eccentric, binary black hole system are derived here for the first time. These expressions are
used to search for the signature of G-waves emitted by the proposed supermassive binary black hole system in
3C 66B. We use data from long-term timing observations of the radio pulsar PSR B1855+09. For the case of a
circular orbit, the emitted G-waves should generate clearly detectable fluctuations in the pulse-arrival times of
PSR B1855+09. Since no G-waves are detected, the waveforms are used in a Monte Carlo analysis in order to
place limits on the mass and eccentricity of the proposed black hole system. The analysis presented here rules out
the adopted system with 95% confidence. The reported analysis also demonstrates several interesting features of
a G-wave detector based on pulsar timing.

Subject headings: black hole physics — gravitational waves — pulsars: general —
pulsars: individual (B1855+09)

1. INTRODUCTION

This work describes a general technique used to constrain
the properties of supermassive binary black hole (SBBH)
systems using pulsar-timing observations. This technique is
applied to the recently proposed SBBH system in 3C 66B
(Sudou et al. 2003; hereafter S03) using 7 yr of timing data
from the radio pulsar PSR B1855+09. Given the length of
the available data set and this pulsar’s low rms timing noise
(1.5 !s), these data are well suited for this analysis.

Expressions are derived for the expected timing residuals
induced by G-waves generated from two orbiting masses. The
effects of orbital eccentricity, viewing geometry, and post-
Newtonian orbital evolution are included. Since the resulting
waveforms are quasi-periodic, although not necessarily sinu-
soidal, a periodogram analysis together with harmonic sum-
ming can be used to search for the signature of G-waves in
pulsar-timing data. When this signature is detected, the de-
rived expressions can be used to determine the system’s chirp
mass and eccentricity. For a nondetection, these expression
can be used in a Monte Carlo analysis in order to place limits
on the properties of the proposed system.

In this work, the derived expressions are used to place limits
on the proposed SBBH system in 3C 66B, a nearby (z ¼ 0:02)
radio galaxy. S03 recently suggested that this galaxy may
contain a SBBH system with a current period of 1.05 yr, a
total mass of 5:4 ; 1010 M", and a mass ratio of 0.1. Such a
system will merge in #5 yr. Although it would be fortuitous to
catch such a system so close to coalescence, the reward for
directly detecting G-waves for the first time is large enough to
warrant a short investigation focused on this system.

Future work will place constraints on other known nearby
candidate SBBH systems. Lommen & Backer (2001) showed
that meaningful constraints could be placed on about a dozen
nearby sources, if pulsar timing can reach sensitivities of
100 ns. The residual expressions derived here can be used
to place limits on the chirp mass and eccentricity of these
systems. These expressions also show how the same G-wave
will affect multiple sources, thus allowing one to discriminate
between G-wave-induced and non–G-wave-induced timing
fluctuations.

Section 2 describes the expected signature of G-wave
emission from a general binary system; x 3 applies these re-
sults to the specific case of the proposed system in 3C 66B. The
observations of PSR B1855+09 used to search for G-waves
are described in x 4. Section 5 discusses the search tech-
niques employed as well as the Monte Carlo simulation used
to place limits on the mass and eccentricity of the system.
The results are discussed in x 6.

2. THE SIGNATURE OF A SBBH

The orbital motion of a SBBH system will generate gravi-
tational radiation. The emitted G-waves will induce periodic
oscillations in the arrival times of individual pulses from
radio pulsars. Given a model for the pulse arrival times in the
absence of G-waves, one can generate a time series of
‘‘residuals,’’ which are the observed pulse arrival times minus
the expected pulse arrival times. Ideally, the effects of known
accelerations are removed from the timing residuals, leaving
only the variations due to the presence of G-waves.

The emitted G-waves are described by two functions of
spacetime, hþ and h;, which correspond to the gravitational
wave strain of the two polarization modes of the radiation
field. As these waves pass between the Earth and a pulsar, the
observed timing residuals, R(t), will vary as (Estabrook &
Wahlquist 1975; Detweiler 1979)

R(t) ¼ 1

2
1þ cos !ð Þ rþ tð Þ cos 2 ð Þ þ r; tð Þ sin 2 ð Þ½ (; ð1Þ
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where t is time, ! is the opening angle between the G-wave
source and the pulsar relative to Earth,  is the G-wave
polarization angle, and the ‘‘+’’ and ‘‘;’’ refer to the two
G-wave polarization states. The functions rþ and r;, referred
to collectively as rþ;;, are related to the G-wave strain by

rþ;;(t) ¼ reþ;;(t)# r
p
þ;;(t); ð2Þ

reþ;;(t) ¼
Z t

0

heþ;;(") d"; ð3Þ

r
p
þ;;(t) ¼

Z t

0

h
p
þ;; " # d

c
1# cos !ð Þ

! "
d"; ð4Þ

where heþ;;(t) is the G-wave strain at Earth, h
p
þ;;(t) is the

gravitational wave strain at the pulsar, " is the time integration
variable, d is the distance between Earth and the pulsar, and c
is the speed of light. Note that the pulsar term, hpþ;;, is eval-
uated at the current time minus a geometric delay.

G-waves emitted by a system in a circular orbit (i.e., zero
eccentricity) will vary sinusoidally as a function of time, with
a frequency given by twice the orbital frequency. For eccentric
systems, the emitted waves will contain several harmonics of
the orbital frequency. The second harmonic will dominate at
low eccentricities, while the fundamental (i.e., the orbital)
frequency will dominate at high eccentricities. In general, the
period and eccentricity of a binary system will be decreas-
ing with time, because the system is radiating away energy
and angular momentum in G-waves. Hence, the frequencies
present in hþ;;(t) will vary with time. Since r eþ;; and r

p
þ;; may

be generated by hþ;;(t) at epochs separated by an extremely
long time interval, the frequency content of these terms may
differ significantly.

The G-wave strain, h(t), induced by a black hole binary can
be calculated using the standard weak-field approximation
applied to two orbiting point masses (Wahlquist 1987). The
expected residuals are found by integrating h(t) with respect to
time (see eqs. [2]–[4]):

reþ(t) ¼ # (t) A(t) cos (2$)# B(t) sin (2$)½ '; ð5Þ

re;(t) ¼ # (t) A(t) sin (2$)þ B(t) cos (2$)½ '; ð6Þ

# (t) ¼ M 5=3
c

D!1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# e(t)2

p

1þ e(t) cos %(t)½ '
; ð7Þ

where D is the distance to the source, $ is the orientation of
the line of nodes on the sky, !(t) is the orbital frequency, e(t)
is the eccentricity, %(t) is the orbital phase, and Mc is the
‘‘chirp mass,’’ defined as

Mc ¼ Mt
m1m2

M2
t

$ %3=5

; ð8Þ

where Mt ¼ m1 þ m2 and m1 and m2 are the masses of the
individual black holes. Note that all units from equation (5) on
are in ‘‘geometrized’’ units,5 where G ¼ c ¼ 1. A(t) and B(t)
are given by

A(t) ¼ 2e(t) sin %(t)½ ' cos %(t)# %n½ '2# cos i½ '2 sin %(t)# %n½ '2
n o

# 1

2
sin 2 %(t)# %n½ 'f gf1þ e(t) cos ½%(t)'g 3þ cos 2ið Þ½ ';

ð9Þ

B(t) ¼ 2 cos i cos 2 %(t)# %n½ 'f gþ e(t) cos ½%(t)# 2%n'ð Þ; ð10Þ

where i and %n are the orbital inclination angle and the value of
% at the line of nodes, respectively (Wahlquist 1987). Values
for %(t) and e(t) are given by the coupled differential equations
(Wahlquist 1987; Peters 1964)

d%

dt
¼ !(t)

1þ e(t) cos %(t)½ 'f g2

1# e tð Þ2
h i3=2 ; ð11Þ

de

dt
¼# 304

15
M 5=3

c !8=3
0 &#4

0

e tð Þ#29=19 1# e tð Þ2
h i3=2

1þ 121=304ð Þe tð Þ2
h i1181=2299 ;

ð12Þ

where !0 is the initial value of !(t) and &0 is a constant that
depends on the initial eccentricity e0:

&0 ¼ 1# e20
& '

e
#12=19
0 1þ 121

304
e20

! "#870=2299

: ð13Þ

Here !(t) is given by

!(t) ¼ a0e tð Þ#18=19 1# e tð Þ2
h i3=2

1þ 121

304
e tð Þ2

! "#1305=2299

;

ð14Þ

where a0 is determined by the initial condition !(t ¼ 0) ¼ !0.
The above equations are accurate to first order in v=c and valid
only when both e(t) and !(t) vary slowly with time. The
expressions for rpþ;; are identical to those for r

e
þ;;. Note that r

p
þ;;

is evaluated at an earlier time than reþ;; (see eqs. [3] and [4]).

3. APPLICATION TO 3C 66B

S03 suggest the presence of a 1:3 ; 1010M( black hole bi-
nary in the radio galaxy 3C 66B. Their VLBI measurements at
both 8.4 and 2.3 GHz show the elliptical motion of a radio
core with a period of 1:05 ) 0:03 yr at epoch 2002. Normally,
this motion would be attributed to the precession of a jet (e.g.,
Katz 1997), but in this case, S03 argue that the observed
motion is due to the orbit of the jet’s source, a supermassive
black hole, around a supermassive black hole companion.
Concerning these claims, we note several issues. First, only a
single orbit is observed, i.e., the elliptical motion has not yet
been shown to be repeatable. Second, S03 do not address the
possibility that the observed elliptical motion, which is per-
ilously close to having a 1 yr period, is somehow the result of
the Earth’s motion around the Sun. Third, they suggest that the
system will merge in about 5 yr. Hence, the a priori probability
that we have ‘‘caught’’ such a system in the act of coalescence
is very low. Nonetheless, the proposed system would generate5 In geometrized units, mass and distance are in units of time.
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Retardation

The power of the pulsar term

Remember Caterina’s talk:
• The timing residual is the integral over these variation over the duration of

the timing experiment:



Retardation & Source evolution
Like in binary pulsars, GW damping will cause the BH binary to shrink, leading to 
increase in GW frequency. For a circular orbit one has:
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Like in binary pulsars, gravitational wave damping will cause the black-hole binary to shrink, and 
consequently lead to an increase in the gravitational wave frequency. For a circular orbit one has

->! frequency evolution during Tobs generally negligible, but some sources could have a significant
! frequency evolution between pulsar term and Earth term. 
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Example: pulsar at 1.4 kpc distance and a SMBH binary (m1=m2=109M⊙) in the Virgo cluster

20 nHz 26.4 nHz

with "chirp mass"
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Like in binary pulsars, gravitational wave damping will cause the black-hole binary to shrink, and 
consequently lead to an increase in the gravitational wave frequency. For a circular orbit one has

->! frequency evolution during Tobs generally negligible, but some sources could have a significant
! frequency evolution between pulsar term and Earth term. 
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(m1m2)3/5
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✓
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c3
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(⇡f)8/3 with chirp mass

Example: pulsar at 1.4 kpc distance and a SMBH binary (m1=m2=109M⊙) in the Virgo cluster

20 nHz 26.4 nHz

Frequency evolution during Tobs generally negligible, but some sources could have 
significant frequency evolution between pulsar term and Earth term.
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Like in binary pulsars, gravitational wave damping will cause the black-hole binary to shrink, and 
consequently lead to an increase in the gravitational wave frequency. For a circular orbit one has

->! frequency evolution during Tobs generally negligible, but some sources could have a significant
! frequency evolution between pulsar term and Earth term. 

Mc ⌘
(m1m2)3/5
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✓
GMc

c3

◆5/3

(⇡f)8/3 with chirp mass

Example: pulsar at 1.4 kpc distance and a SMBH binary (m1=m2=109M⊙) in the Virgo cluster

20 nHz 26.4 nHz

Example: pulsar at 1.4 kpc distance and a SMBH binary (m1=m2=109M⊙) in the Virgo 
cluster: 

(Wex priv. comm.)



Pulsar-Earth as PTA “detector arm”
Single source affects both pulsar & Earth at different times (retardation):

Wex

• Signal is superposition of two parts: 

- GW impacting on pulsar

- GW impacting on Earth

• Different frequencies due to retardation
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Retardation & Source evolution
In principle a tool to look at past evolution of source:

(Wex priv. comm.)
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Locating a (non-evolving) single source with the SKA
Response pattern for PSR J0437-4715 

for a 6.3 nHz gravitational wave

Npsr=40 Dpsr=100pc  mn=10ns  h0=1e−16
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40 millisecond pulsars at ~2 kpc distance 

One 15 ns TOA every two weeks for 5 years

With a SKA-PTA, we can locate the

binary SMBH in the sky:
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Allowing EM follow-up of GW sources!

6 K. J. Lee et al.
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Figure 2. Response pattern H of a single-pulsar timing response to a single monochromatic GW source. For illustration purposes, the
pulsar distance is chosen to be small with a value of 200 pc and the GW period is chosen as 5 years, in order to show the structure of
the response pattern. The GW source is in the 0◦ angle position, the orbital plane inclination is 90◦ and the orbital plane coincides with
the paper plane. In this way the plotted response pattern is, in fact, the term (1 + cos θ) sin(∆Φ/2) in equation. (A7).

is derived from the detailed motion of the Earth from Solar System dynamics (Seidelmann 2005). For the purpose of this
paper, it is sufficient to keep the leading term of the timing parallax, i.e. assuming a circular motion of the Earth,

Rpar(t) =
cos[2(λpsr − λ⊕(t))] cos2 βpsrr

2
⊕

4Dpsr
, (17)

where the term r⊕ is the average distance between the Sun and the Earth, and λ⊕(t) = 2π(t/1 year) is the ecliptic longitude

of the Earth at time t. This form of timing parallax assumes that the eccentricity of the Earth orbit is zero. This assumption
is valid for cases where the pulsar is not too close to the ecliptic poles, i.e. (−89◦ ! β ! +89◦), such that a timing parallax

signal is not dominated by the Earth orbit’s eccentricity. As this will generally be the case, the error of the measured pulsar

timing parallax distance is (see Appendix B for details)

σDpsr =
4
√
2σnD

2
psr√

Nobs r2⊕ cos2 βpsr
$ 2.34

cos2 βpsr

(

Nobs

100

)− 1
2

(

Dpsr

1 kpc

)2
(

σn

10 ns

)

pc , (18)

where Nobs is the number of TOAs. The numerical factor is derived assuming that the time span of pulsar data is longer
than one year. In a real data analysis, one always uses the full Solar System ephemeris. We compared equation. (18) with

results from numerical simulations based on TEMPO3 and the planetary ephemeris DE405 (Standish 1998). For pulsars with

−89◦ ! β ! +89◦, we find that the simplified version of the timing parallax shown above agrees with the correct result
derived from TEMPO within a few percent difference, justifying the usage of equation. (18) for the purpose of the present

paper. We note that the validity of equation. (17) comes from the fact that the Earth orbital eccentricity is small and that
we are investigating measurement accuracies, where the effect of orbital eccentricity is of even higher order. According to

equation. (18), with a timing accuracy at the 10 to 30-ns level, one can use the timing parallax to measure the pulsar distance

accurately to a few light years for pulsar distances of less than 1 kpc. This distance accuracy become comparable to the
wavelength of the GW, and the timing parallax measurement is therefore indeed a potential technique to remove the pulsar

distance confusion. Both GW parameters and pulsar distances should thus be estimated from pulsar timing data at the same

time. In the following, we estimate the corresponding accuracy of the GW parameters and pulsar distances measurements
based on the signal timing of equation. (10).

3.2 Vector Ziv-Zakai bound for signals with additive white Gaussian noise

We are, now, going to determine the statistical error of estimating GW parameters using data from a PTA. A well known

and popular statistical technique to calculate such lower bounds of the statistical accuracies of parameter estimators is the

3 See http://www.atnf.csiro.au/research/pulsar/tempo/.
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Lee et al. (2011)
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the GR and breathing modes, the GW-induced correlation func-
tions can be calculated analytically. For the shear and longitudinal
polarizations, modes that are not purely transverse, the correlation
function must be computed with Monte Carlo simulations.

We consider a distribution of plane GWs in a general metric
theory of gravity. The function hP( f ; êz)df d! denotes the distri-
bution of GWs of polarization P, in the frequency interval df and
in the solid angle d! around the propagation direction êz, such
that the GWmetric perturbation, at a given spacetime point (t; r) is

hab(t; r)

¼
X

P¼þ; ; ;b;sn;se;l

Z 1

#1
df

Z
d! hP f ; êzð Þe2!if (t#r = êz=c)P

ab êzð Þ:

ð1Þ

The polarization index P indicates any of the polarization states
þ, ; , b, sn, se, and l; the ‘‘þ’’ and ‘‘ ; ’’ denote the two different
GR spin-2 transverse traceless polarization modes; the ‘‘sn’’ and
‘‘se’’ denote the two spin-1 shear modes; the ‘‘l’’ and ‘‘b’’ denote
the spin-0 longitudinal mode and the spin-0 breathing mode,
respectively.

In this paper, we apply equation (1) to a stochastic background
of GWs. This stochastic background is a superposition of mono-
chromatic plane wave components with a frequency chosen at ran-
dom from a predetermined spectrum, for our purposes always a
power-law spectrum. The propagation direction of each plane
wave component is chosen at random from an isotropic distri-
bution. For a given planewave component, the polarization tensor
"Pab for the polarization state P depends on the direction of prop-
agation (e.g., it is parallel to the propagation direction for the

TABLE 1

Expansion Coefficients of the Normalized Cross-Correlation Function, #($) ¼ C($)/C(0)

% c0 c1 c2 c3 c4 c5

ck for C sn;se($)

0........................................ 0.0378 #0.0871 0.1928 #0.1086 0.0239 #0.0073

#2/3 ................................. 0.0317 #0.0739 0.1603 #0.0955 0.0289 #0.0121

#1 .................................... 0.0298 #0.0700 0.1511 #0.0917 0.0302 #0.0135

ck for Cl($)

0........................................ 0.0584 #0.1206 0.1386 #0.0908 0.0409 #0.0147

#2/3 ................................. 0.0512 #0.1057 0.1220 #0.0805 0.0373 #0.0156

#1 .................................... 0.0470 #0.0987 0.1148 #0.0785 0.0388 #0.0175

Notes.—We obtain this table using Legendre polynomials, i.e., #($) ¼
PN

k¼0 ckPk (2$/!# 1) with 0 & $ & !. Note
that these expansions are not applicable when $ ¼ 0. The % column indicates the power index of the GW background. By
using these normalized cross-correlation functions, #($), and by calculating C(0) from eq. (A37), the cross-correlation
functions C($) can be found.

Fig. 1.—Normalized pulsar timing residual correlation coefficient, #P ¼ CP($)/CP(0). Here, $ is the angular separation between two pulsars. ‘‘GR’’ stands for the two
transverse traceless modes, ‘‘+’’ and ‘‘;.’’ For the shear and longitudinal modes, the plots are the curves fitted with the expansion coefficients in Table 1, for five years of
observation. Results are given for several values of% , the power-law index of theGWspectrum. The change in # sn;se;l is on the order of 10#2 for a change in% from0 to#1.
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of the lack of a theory of the graviton, it is important to have
upper limits based on different phenomenological implications
of graviton mass.

The mass limit of Finn & Sutton (2002) is based on the
effect of graviton mass on the generation of GWs, not on their
propagation, but the dispersion relation for propagation is also
an important independent approach to a mass limit, as has been
recently suggested by a number of groups (Will 1998; Larson
& Hiscock 2000; Cutler et al. 2003; Stavridis & Will 2009).
Questions about this method are timely since the detection
of GWs is expected in the near future, thanks to the progress
with present ground-based laser interferometers, possible future
space-based interferometers (Hough & Rowan 2000; Hough
et al. 2005), and pulsar timing array projects (Sallmen et al.
1993; Stappers et al. 2006; Manchester 2006; Hobbs et al.
2009b).

The pulsar timing array is a unique technique to detect
nano-Hertz GWs by timing millisecond pulsars, which are
very stable celestial clocks. It turns out that a stochastic GW
background leaves an angular-dependent correlation in pulsar
timing residuals for widely spaced pulsars (Hellings & Downs
1983; Lee et al. 2008). That is, the correlation C(θ ) between
timing residual of pulsar pairs is a function of angular separation
θ between the pulsars. One can analyze the timing residual and
test such a correlation between pulsar timing residuals to detect
GWs (Jenet et al. 2005). We find in this paper that if the graviton
mass is not zero, the form of C(θ ) is very different from that
given by general relativity. Thus, by measuring this graviton
mass-dependent correlation function, we can also detect the
massive graviton.

The outline of this paper is as follows. The mass of the
graviton is related to the dispersion of GWs in Section 2. The
pulsar timing responses to a plane GW and to a stochastic GW
background in the case of a massive graviton are calculated in
Section 3. The massive graviton induces effects on the shape
of the pulsar timing correlation function, which is derived in
Section 4, while the detectability of a massive GW background is
studied in Section 5. The algorithm to detect a massive graviton
using a pulsar timing array and the sensitivity of that algorithm
are examined in Section 6. We discuss several related issues and
conclude in Section 7.

2. GRAVITATIONAL WAVES WITH
MASSIVE GRAVITONS

We incorporate the massive graviton into the linearized weak
field theory of general relativity (Gupta 1952; Arnowitt & Deser
1959; Weinberg 1972). For linearized GWs, specifying the
graviton mass is equivalent to specifying the GW dispersion
relation that follows from the special relativistic relationship:

E2 = p2c2 + m2c4, (1)

where c is the light velocity, E is energy of the particle, and p
and m are the particle’s momentum and rest mass, respectively.
One can derive the corresponding dispersion relation from
Equation (1) by replacing the momentum by p = h̄kg and the
energy by E = h̄ωg , where h̄ is the reduced Planck constant with
kg and ωg , respectively, the GW wave vector and the angular
frequency. With these replacements, the dispersion relation for
a massive vacuum GW graviton propagating in the z direction
reads

kg(ωg) =
(
ω2

g − ω2
cut

) 1
2

c
êz , (2)

where êz is the unit vector in the z direction. If the GW frequency
ωg is less than the cutoff frequency ωcut ≡ mgc

2/h̄, then
the wave vector becomes imaginary, indicating that the wave
attenuates and does not propagate. (The equivalent phenomena
for electromagnetic waves can be found in Section 87 of Landau
& Lifshitz 1960.)

At a spacetime point (t, r), the spatial metric perturbation due
to a monochromatic GW is

hab(t, r) = #
[

∑

P=+,×
AP εP

abe
i[ωgt−r·kg(ωg)]

]

, (3)

where # indicates the real part, and where the a, b range over
spacetime indices from 0 to 3. The summation is performed
over the polarizations of the GW. Since we are not assuming
that general relativity is the theory of gravitation, we could,
in principle, have as many as six polarization states. For
definiteness, however, and to most clearly show how pulsar
timing probes graviton mass, we will confine ourselves in
this paper to only the two standard polarization modes of
general relativity, denoted + and ×, the usual “TT” gauge (see
Appendix A for the details). Thus, the polarization index takes
on only the values P = +,×, with AP and εP standing for
the amplitude and polarization tensors for the two transverse
traceless modes.

The polarization tensor εP is described in terms of an
orthonormal three-dimensional frame associated with the GW
propagating direction. Let the unit vector in the direction of
GW propagation be êz; we can choose the other two mutually
orthogonal unit vectors êx, êy to be both perpendicular to êz.
In terms of these three vectors, êz, êx , and êy , the polarization
tensors are given as

ε+
ab = êxa êxb − êya êyb,

ε+
ab = êxa êyb + êya êxb . (4)

Since the polarization tensors are purely spatial, we will
have only spatial components of the metric perturbations. For
a stochastic GW background, these metric perturbations are a
superposition of monochromatic GWs with random phase and
amplitude and can be written as

hij (t, ri) =
∑

P=+,×

∫ ∞

−∞
dfg

∫
dΩ hP (fg, êz) εP

ij (êz)ei[ωgt−kg(ωg)·r],

(5)
where fg = ωg/2π is the GW frequency, Ω is solid angle,
spatial indices i, j run from 1 to 3, and hP is the amplitude
of the GW propagating in the direction of êz per unit solid
angle, per unit frequency interval, in polarization state P. If
the GW background is isotropic, stationary, and independently
polarized, we can define the characteristic strain hP

c according
to Maggiore (2000) and Lee et al. (2008), and can write

〈hP (fg, êz)h%P ′
(f ′

g, êz
′)〉 =

∣∣hP
c

∣∣2

16πfg
δPP ′δ(fg − f ′

g)δ(êz − ê′
z),

(6)
where the % stands for the complex conjugate and 〈〉 is the
statistical ensemble average. The symbol δPP ′ is the Kronecker
delta for polarization states; δPP ′ = 0 when P and P ′ are
different, and δPP ′ = 1 when P and P ′ are the same. With
the relationships above, one can show that

〈hab(t)hab(t)〉 =
∑

P=+,×

∫ ∞

0

∣∣hP
c

∣∣2

fg
dfg. (7)1590 LEE ET AL. Vol. 722
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where fg = ωg/2π is the GW frequency, Ω is solid angle,
spatial indices i, j run from 1 to 3, and hP is the amplitude
of the GW propagating in the direction of êz per unit solid
angle, per unit frequency interval, in polarization state P. If
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polarized, we can define the characteristic strain hP

c according
to Maggiore (2000) and Lee et al. (2008), and can write
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Figure 2. Atlas for cross-correlation functions C(θ ). The label of each curve indicates the corresponding graviton mass in units of electron volts (eV). The left panel
shows the correlation functions for a 5 year bi-weekly observation. The right panel shows correlation functions for 10 years of bi-weekly observations. We take
α = −2/3 for these results. These correlations are normalized such that C(0) = 0.5 for two different pulsars.

m runs from 1 to the number of pulsar pairs M = (Np −1)Np/2,
because the autocorrelations are not used.

Following Jenet et al. (2005), we define

ρ =
∑M

m=1(C(θm) − C)(c(θm) − c)
√∑M

m=1(C(θm) − C)2
∑M

m=1(c(θm) − c)2
, (21)

where C =
∑M

m=1 C(θm)/M and c =
∑M

m=1 c(θm)/M . Then
the statistic S, describing the significance of the detection, is
S =

√
M ρ. In particular, when there is no GW present, c(θm)

will be Gaussian-like white noise, the probability of getting a
detection significance larger than S is about erfc(S/

√
2)/2 (Jenet

et al. 2005).
Our aim is to determine the ability of a given pulsar timing

array configuration to detect a GW background. To do this,
we calculate the expected value for the detection significance
S by using a second set of Monte Carlo simulations. These
second Monte Carlo simulations are similar to the first ones, but
instead of calculating the average value for C(θ ), we inject white
noise for each pulsar, to represent the intrinsic pulsar noise and
instrumental noise, and we calculate the expected value of S.
We summarize the following steps here.

1. Generate a large number of GW sources (104) to simulate
the required GW background.

2. Calculate the timing residual for each pulsar as described
above and add white Gaussian noise.

3. Calculate the measured correlation c(θm) using
Equation (20) and calculate the detection significance S
using Equation (21).

4. Repeat steps 1–3 and average over the detection signifi-
cance S. The converged S is the value needed to estimate
the detection significance.

The results for the expectation value of S, as a function of GW
amplitude Ac for various pulsar timing array configurations, are
presented in Figure 3. We have also compared simulations from
several different pulsar samples with the same number of pulsars
to make sure such S is not sensitive to the detailed configuration
of the pulsar samples.

Two features of the curves in Figure 3 are worth noting. First,
the minimal detection amplitude of a GW background becomes
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Figure 3. Expected GW background detection significance using a pulsar timing
array with 20 pulsars, observed for 5 years, with 100 ns timing noise. The
graviton mass, in units of electron volts, is labeled above each curve. The x-axis
is the amplitude for the characteristic strain of the GW background (f0 = 1 yr−1,
α = −2/3), while the y-axis is the expected detection significance S.

larger, when a massive graviton is present, i.e., the leading edge
of the S–Ac curve shifts rightwards as mg is made larger. This
tells us that in order to detect a massive GW background, one
needs a stronger GW background signal or a smaller pulsar
intrinsic noise than in the case of a massless GW background.
As previously noted, this effect is mainly due to the reduction
of the pulsar timing response and the reduction of the GW
amplitude at lower frequencies. Figure 3 also tells us when we
can neglect the effect of a massive graviton. It is clear from
Figure 3 that if mg ! 2 × 10−23 eV for a 5 year observation,
the minimal detection amplitude is not reduced by more than
5%. For 10 years of observation, a 5% reduction corresponds to
mg = 10−23 eV.

The second noteworthy feature of the S–Ac curves in Figure 3
is that of the saturation level of detection significance. Due to
the pulsar distance term of Equation (11) (the term involving the
D), the detection significance achieves a saturation level when
the GW-induced timing residuals are much stronger than the
intrinsic pulsar timing noise (Jenet et al. 2005). From Figure 3,
we note that the saturation level of detection significance is large,

Testing the properties of gravitons with the SKA
Polarization modes – Spin 2? Dispersion relation: massive graviton?

Lee et al.( 2008)

Lee et al. (2010)
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Fig. 2 Here, we outline the approximate number of pulsars and timing precision required to access various
science, based on current predictions for each signal. The upper and lower panels represent a 10- and 25-
year timing array, respectively. In the top plot, the black curve shows a representative PTA, reflecting the
upcoming NANOGrav 12.5-year data release. That data set contains approximately 70 pulsars; however
the timescale over which each pulsar has been timed ranges from ∼1 to 20 years. The lower plot shows
expectations for the future IPTA, assuming approximately 100 pulsars. Each curve shows pulsars that are
timed to a precision lower than or equal to the indicated RMS timing precision. The location and shape of
the SMBHB regions reflect the scaling relations of Siemens et al. (2013). These assume a detection signal-
to-noise ratio of at least five, and an SMBHB background of hc ! 1 × 10−15, which is just below the most
recent limit placed independently by several PTAs on this background source of GWs. A longer-duration
PTA requires less precision and fewer pulsars for a detection because the signal-to-noise ratio scales with
total observing time
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Strings, dark matter & axions etc., and… 

(Burke-Spolaoret al. 2019)



…true complementarity

(Burke-Spolaoret al. 2019)
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Fig. 3 Binary SMBHs can form during a major merger. Pulsar timing arrays’ main targets are continuous-
wave binaries within ∼0.1 pc separation (second panel in the lower figure; Sect. 3.1.2), although we may
on rare occasion detect “GW memory” from a binary’s coalescence (Favata 2010, Sect. 3.1.3). Millions of
such binaries will contribute to a stochastic GW background, also detectable by PTAs (Sect. 3.1.4). A major
unknown in both binary evolution theory and GW prediction is the means by which a binary progresses
from ∼10 pc separations down to ∼0.1 pc, after which the binary can coalesce efficiently due to GWs (e. g.,
Begelman et al. 1980). If it cannot reach sub-parsec separations, a binary may “stall” indefinitely; such
occurrences en masse can cause a drastic reduction in the ensemble GWs from this population. Alternately,
if the binary interacts excessively with the environment within 0.1 pc orbital separations, the expected
strength and spectrum of the expected GWs will change. Image credits: Galaxies, Hubble/STSci; 4C37.11,
Rodriguez et al. (2006); Simulation visuals, C. Henze/NASA; Circumbinary accretion disk, C. Cuadra

of structure formation, galaxies and SMBHs grow through a continuous process of gas
and dark matter accretion, interspersed with major and minor mergers. Major galaxy
mergers form binary SMBHs, and these are currently the primary target for PTAs. In
this section, we lay out a detailed picture of what is not known about the SMBHB
population, how those unknowns influence GW emission from this population, and
what problems PTAs can solve in this area of study.

In Fig. 3, we summarize the life cycle of binary SMBHs. SMBHB formation begins
with a merger between two massive galaxies, each containing their own SMBH.
Through the processes of dynamical friction and mass segregation, the SMBHs will
sink to the center of the merger remnant through interactions with the galactic gas, stars,
and dark matter. Eventually, they will form a gravitationally bound SMBHB (Begel-
man et al. 1980). Through continued interaction with the environment, the binary orbit
will tighten, and GW emission will increasingly dominate their evolution.

Any detection of GWs in the nanohertz regime, either from the GW background or
from individual SMBHBs, will be by itself a great scientific accomplishment. Beyond
that first detection, however, there are a variety of scientific goals that can be attained
from detections of the various types of GW signals. The subsections below discuss
these in turn, first setting up GW emission from SMBHB systems and then detailing
the influence of environmental interactions. Each section describes a different aspect
of galaxy evolution that PTAs can access.
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Fig. 16 LIGO, LISA, and PTAs have complementary coverage to study the full range of black hole
masses at various stages of the Universe. Here we show the approximate signal-to-noise ratio for the
complementary wavebands of these three instruments as they are currently (darker shading/black contours)
and in the early- to mid-2030’s era (lighter shading). This plot focuses only on individual (rather than
stochastic) black hole detections. All curves assume instrument-limited sensitivity, without an astrophysical
background. Individual inspiral/coalescence events at high redshift will be detectable by LISA, while
systems in the extended inspiral phase at higher masses and lower redshift are detectable by PTAs as
continuous gravitational waves. The source classes of LISA and PTAs are particularly linked through the
evolution of MBHs across cosmic time. Understanding the growth of MBHs will require the contributions
of both PTA and LISA data. Figure produced by Andrew Kaiser and Sean McWilliams (WVU); a more
rigorous version will be published in Kaiser & McWilliams (in prep)

the probability of a sequential detection being extremely low (4.7×10−4– 3.3×10−6

per year to merger per year of survey) due to the small number of individual sources
observable by both detectors (Spallicci 2013).

It is also possible to use ringdown observations made by LISA as triggers to search
PTA data for past continuous waves, or for memory-inducing SMBHB coalescence
events (Sect. 3.1.3). LISA can observe the ringdown of higher mass sources, even
when the inspiral and merger happen outside of the LISA band, meaning there is better
overlap for direct observations of these sources with both PTAs and LISA. Parameter
constraints from observing the ringdown can be used to improve the search for the
inspiral, extrapolating a SMBHB model back in time to predict the expected gravita-
tional waveform throughout the previous years of pulsar observations. Currently, the
planned launch date for LISA is 2034, at which point PTAs will have accumulated
over 30 years of data that can be used for such a search.

Galactic sources of GWs that LISA will be able to study may, under certain cir-
cumstances, be possible to investigate with pulsar timing. Globular clusters (GCs)
likely host GW sources detectable by LISA (Kremer et al. 2018). GCs are also known
to host large populations of pulsars (Freire et al. 2017; Ransom et al. 2005). Pulsars
in a GC will be within a few parsecs of GW sources in that cluster and could act as
sensitive probes of those GWs (Jenet et al. 2005; Madison et al. 2017). Pulsars in GCs
have some limitations in sensitivity due to accelerations from intra-cluster dynamics,
which tend to cause low-frequency structure in the timing residuals of those pulsars,
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(Kaiser & McWilliams 2021)

FIG. 7: Strain power spectral density (psd) amplitude vs. frequency for various GW detectors and GW

sources (from [118]). See Fig. 6 caption for the meaning of various acronyms.

1993 First successful simulation of the head-on collision of two BHs, QNM ringing of the final BH ob-

served [15].

1993 Choptuik uses mesh refinement and finds evidence of universality and scaling in the gravitational

collapse of a massless scalar field [57].

1994 The “Binary Black Hole Grand Challenge Project”, the first large collaboration with the aim of

solving a specific NR problem (modeling a binary BH coalescence), is launched [58, 131].

1995 Through a conformal decomposition, a split of the extrinsic curvature and use of additional variables

Shibata & Nakamura [173] and Baumgarte & Shapiro (1998) [27] recast the ADM [19] Hamiltonian

equations as the so-called BSSN system.

1996 Brügmann [49] uses mesh refinement for simulations of BH spacetimes.

1998 First stable simulations of a single BH spacetime in fully 4 dimensional NR within a “characteristic

formulation” [92, 120], and two years later within a Cauchy formulation [10].

2000 The first general relativistic simulation of the merger of two NSs [174].

2005 Pretorius [160] achieves the first long-term stable numerical evolution of a BH binary.

2006 Soon afterwards, other groups independently succeed in evolving merging BH binaries using di↵erent

techniques [24, 51].
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Summary & Conclusions

• Current PTAs & IPTA may move towards a detection

• All PTAs see something – but what is it?

• We need control of systematic effects, independent data & analyses, cross-checks

• It requires the IPTA and different telescopes (EPTA as a mini-IPTA as example)

• A secure detection may require still further sensitivity

• New facilities are added (FAST, MeerKAT, GMRT)

• Future facilities (SKA, ngVLA or 6 x FAST!) will allow study of the signals

• Fundamental physics tests will become possible

About 50 years after pulsars provided the first evidence for gravitational waves,

they promise to be used as a GW telescope in their own right.


