

LISA

Observing GW Universe from space

Antoine Petiteau

(APC - Université de Paris)

Workshop GW Probes of Physics Beyond Standard Model

Remote - 16th July 2021

Overview

- Instrument
 - Space segment ("hardware")
 - Ground segment ("data processing")
- **▶ GW Science with LISA**
- Organisation and status

I U M

THE GRAVITATIONAL WAVE SPECTRUM

LISA mission

- **▶** Laser Interferometer Space Antenna
- ▶ 3 spacecrafts on heliocentric orbits and distant from
 - 2.5 millions kilometers

• Goal: detect relative distance changes of 10-21: few picometers

Being sensitive "only" to gravity

- ▶ Spacecraft (SC) should only be sensible to gravity:
 - the spacecraft protects test-masses (TMs) from external forces and always adjusts itself on it using micro-thrusters
 - Readout:
 - interferometric (sensitive axis)
 - capacitive sensing

Being sensitive "only" to gravity

- ▶ Spacecraft (SC) should only be sensible to gravity:
 - the spacecraft protects test-masses (TMs) from external forces and always adjusts itself on it using micro-thrusters
 - Readout:
 - interferometric (sensitive axis)
 - capacitive sensing

LISAPathfinder

LISA

- **▶** Basic idea: Reduce one LISA arm in one SC.
- ▶ Operations: March 2016 to June 2017
- LISAPathfinder is testing:
 - Inertial sensor,
 - Drag-free and attitude control system
 - Interferometric measurement between 2 free-falling test-masses,
 - Micro-thrusters

LISAPathfinder

LISA

- **▶** Basic idea: Reduce one LISA arm in one SC.
- ▶ Operations: March 2016 to June 2017
- LISAPathfinder is testing:
 - Inertial sensor,
 - Drag-free and attitude control system
 - Interferometric measurement between 2 free-falling test-masses,
 - Micro-thrusters

LISA Pathfinder first result

M. Armano et al. PRL 116, 231101 (2016)

Low frequency noise Investigation still in progress

Brownian noise
Molecules within the noise
hit test-masses

Interferometric noise
Not real test-mass motion

LISAPathfinder final main results

M. Armano et al. PRL 120, 061101 (2018)

► Several steps for an extremely precise measurements

 $(TM2 \rightarrow SC2) + (SC2 \rightarrow SC3) + (SC3 \rightarrow TM3)$

- ► Exchange of laser beams to form several interferometers
- ▶ Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts

- ▶ Exchange of laser beams to form several interferometers
- ▶ Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts

- ▶ Exchange of laser beams to form several interferometers
- ▶ Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts

- ▶ Exchange of laser beams to form several interferometers
- ▶ Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts

- Measurements via exchange of beams:
 - Heterodyne interferometry
 with carrier for inter spacecraft measurement
 => GWs
 - Sideband for transferring
 amplified clock jitter
 correction of additional
 clock jitter
 - Pseudo-Random Noise
 => ranging (measure arm length)
 - Laser locking

- Quadrant Photodiodes for measuring phase and angle (DWS)
- ► Phasemeter: the core of the measurement: complex phase-locked loop system, followed by multiple filters to provide data around 16Hz
- ► Several mechanisms are necessary:
 - PAAM: Point Ahead Angle Mechanism: emission & reception not in the same direction
 - OATM: Optical Assembly Tracking Mechanism: pointing of the MOSA
 - BAM: Beam Alignment Mechanism
 - FSU: Fiber Switching Unit
- ▶ Science diagnostics: temperature, magnetic field, charge, ...
- ► For constellation acquisition, a Constellation Acquisition System (very sensitive camera) is necessary

LISA technology requirements

- ▶ Free flying test mass subject to very low parasitic forces:
 - ✓ Drag free control of spacecraft (non-contacting) with low noise microthruster
 - ✓ Large gaps, heavy masses with caging mechanism
 - ✓ High stability electrical actuation on cross degrees of freedom
 - ✓ Non contacting discharging of test-masses
 - ✓ High thermo-mechanical stability of spacecraft
 - ✓ Gravitational field cancellation
- ▶ Precision interferometric, local ranging of test-mass and spacecraft:
 - ✓ pm resolution ranging, sub-mrad alignments
 - ✓ High stability monolithic optical assemblies
- ▶ Precision million km spacecraft to spacecraft precision ranging:
 - → High accuracy laser frequency stabilisation + noise suppression with TDI
 - → "Tilt to length" coupling (control of alignement + ground correction)
 - → Low level of stray-light
 - **→** High stability telescopes
 - → High accuracy phase-meter and frequency distribution
 - → Constellation acquisition

LISA noises

- In the on-board interferometric measurements the main noises sources are
 - Laser noise : 10⁻¹³ (vs 10⁻²¹)
 - Clock noise (3 clocks)
 - Longitudinal SC jitter
 - Tilt-to-Length
 - Modulation error
 - Acceleration noise
 - Read-out noises
 - Optical path noises
 - Stray Light

LISA noises

In the on-board interferometric measurements the main noises

sources are

- Laser noise : 10⁻¹³ (vs 10⁻²¹)
- Clock noise (3 clocks)
- Longitudinal SC jitter
- Tilt-to-Length
- Modulation error
- Acceleration noise
- Read-out noises
- Optical path noises
- Stray Light

To be suppressed with onground processing: Initial Noise REduction Pipeline (INREP)

- 6 x 10⁷ galactic binaries
- large number of Stellar Origin BH binaries (LIGO/Virgo)
- 10-100/year SMBHBs
- 10-1000/year EMRIs
- Cosmological backgrounds
- Unknown sources

- 6 x 10⁷ galactic binaries
- large number of Stellar Origin BH binaries (LIGO/Virgo)
- 10-100/year SMBHBs
- 10-1000/year EMRIs
- Cosmological backgrounds
- Unknown sources

- 6 x 10⁷ galactic binaries
- large number of Stellar Origin BH binaries (LIGO/Virgo)
- 10-100/year SMBHBs
- 10-1000/year EMRIs
- Cosmological backgrounds
- Unknown sources

- 6 x 10⁷ galactic binaries
- large number of Stellar Origin BH binaries (LIGO/Virgo)
- 10-100/year SMBHBs
- 10-1000/year EMRIs
- Cosmological backgrounds
- Unknown sources

Gravitational Refe--rence SensorAuxiliary channels

'Survey' type observatory

- 6 x 10⁷ galactic binaries
- large number of Stellar Origin BH binaries (LIGO/Virgo)
- 10-100/year SMBHBs
- 10-1000/year EMRIs
- Cosmological backgrounds
- Unknown sources

Gravitational Refe--rence SensorAuxiliary channels

'Survey' type observatory

GW sources

- 6 x 10⁷ galactic binaries
- large number of Stellar Origin BH binaries (LIGO/Virgo)
- 10-100/year SMBHBs
- 10-1000/year EMRIs
- Cosmological backgrounds
- Unknown sources

Resynchronisation (clock)

Time-Delay Interferometry reduction of laser noise

3 TDI channels with 2 "~independents"

Gravitational Refe--rence SensorAuxiliary channels

'Survey' type observatory

- 6 x 10⁷ galactic binaries
- large number of Stellar Origin BH binaries (LIGO/Virgo)
- 10-100/year SMBHBs
- 10-1000/year EMRIs
- Cosmological backgrounds
- Unknown sources

Resynchronisation (clock)

Time-Delay Interferometry reduction of laser noise

3 TDI channels with 2 "~independents"

Data Analysis of GWs

Catalogs of GWs sources with their waveform

-rence Sensor **Auxiliary channels**

'Survey' type observatory

GW sources

- 6 x 10⁷ galactic binaries
- large number of Stellar Origin BH binaries (LIGO/Virgo)
- 10-100/year SMBHBs
- 10-1000/year EMRIs
- Cosmological backgrounds
- Unknown sources

Resynchronisation (clock)

Time-Delay Interferometry reduction of laser noise

- L1 3 TDI channels with 2 "~independents"
- Data Analysis of GWs **L2**
 - Catalogs of GWs sources L3 with their waveform

LISA data flow

Calibrations corrections

Resynchronisation (clock)

Time-Delay Interferometry reduction of laser noise

- 3 TDI channels with 2 "~independents"
- Data Analysis of GWs
 - Catalogs of GWs sources with their waveform

GW sources

- 6 x 10⁷ galactic binaries
- large number of Stellar Origin BH binaries (LIGO/Virgo)
- 10-100/year SMBHBs
- 10-1000/year EMRIs
- Cosmological backgrounds
- Unknown sources

L3

LISA data flow

Calibrations corrections

Resynchronisation (clock)

Time-Delay Interferometry reduction of laser noise

- 3 TDI channels with 2 "~independents"
- Data Analysis of GWs
 - Catalogs of GWs sources with their waveform

GW sources

- 6 x 10⁷ galactic binaries
- large number of Stellar Origin BH binaries (LIGO/Virgo)
- 10-100/year SMBHBs
- 10-1000/year EMRIs
- Cosmological backgrounds
- Unknown sources

L3

LISA data flow

Mission Operation Centre (carrier, tance)

+ Gravitational Reference

Sensor

Auxiliary channels

'Survey' type observatory

Science Operation Centre

- 6 x 10⁷ galactic binaries
- large number of Stellar Origin BH binaries (LIGO/Virgo)
- 10-100/year SMBHBs
- 10-1000/year EMRIs
- Cosmological backgrounds
- Unknown sources

Resynchronisation (clock)

Time-Delay Interferometry reduction of laser noise

- 3 TDI channels with 2 "~independents"
- Data Analysis of GWs
 - Catalogs of GWs sources with their waveform

LISA data flow

+ Gravitational Reference

LO

Sensor

Auxiliary channels

'Survey' type observatory

Science Operation Centre

- 6 x 10⁷ galactic binaries
- large number of Stellar Origin BH binaries (LIGO/Virgo)
- 10-100/year SMBHBs

Distributed Data Processing

Centre

- UIIKIIUWII SUUILES

Resynchronisation (clock)

Time-Delay Interferometry reduction of laser noise

- 3 TDI channels with 2 "~independents"
- Data Analysis of GWs
- Catalogs of GWs sources with their waveform

LISA data flow

L3

LO

Time-Delay Interferometry

reduction of laser noise

- L1 3 TDI channels with 2 "~independents"
- **Data Analysis of GWs L2**
 - Catalogs of GWs sources with their waveform

GW sources

- 6 x 10⁷ galactic binaries
- large number of Stellar Origin BH binaries (LIGO/Virgo)
- 10-100/year SMBHBs
- 10-1000/year EMRIs
- Cosmological backgrounds
- Unknown sources

Segment sol LISA

Segment sol LISA

Noise reduction

- ▶ From L0 (raw data) to L1 (TDI: data used to extract GWs)
 - Initial Noise Reduction Pipeline (INReP)
 - Synchronisation of time reference
 - Estimation of armlength
 - Time Delay Interferometry
 - Monitoring of instrument

Extracting GWs

- ▶ From L1 (TDI) to L2/L3 (science products: GW catalogue, etc)
- ▶ Complex: large number of sources + artefacts (gaps, glitches, ...)
- ► LISA Data Challenge
 - Generate datasets provided to the community
 - Organise development of data analysis
 - Increase complexity of datasets
 - Example:Sangria dataset

Extracting GWs

- ▶ From L1 (TDI) to L2/L3 (science products: GW catalogue, etc)
- ▶ Complex: large number of sources + artefacts (gaps, glitches, ...)
- ► LISA Data Challenge
 - Generate datasets provided to the community
 - Organise development of data analysis
 - Increase complexity of datasets
 - Example:Sangria dataset

Sensitivity

Noises

Response of the detector to GWs

Compact solar mass binaries

- Large number of stars are in binary system.
- ▶ Evolution in white dwarf (WD) and neutron stars (NS).
 - => existence of WD-WD, NS-WD and NS-NS binaries
- ► Estimation for the Galaxy: 60 millions.
- **▶** Gravitational waves:
 - most part in the slow inspiral regime (quasi-monochromatic): GW at mHz
 - few are coalescing: GW event of few seconds at f > 10 Hz (LIGO/Virgo)

Several known system emitting around the mHz

Galactic binaries

- Gravitational wave:
 - quasi monochromatic
- Duration: permanent
- ▶ Signal to noise ratio:
 - detected sources: 7 1000
 - confusion noise from non-detected sources
- **▶** Event rate:
 - 25 000 detected sources (over 30 millions sources)
 - more than 10 guarantied sources (verification binaries)

Galactic binaries

GW sources
- 6 x 10⁷ galactic binaries

Stellar mass BH binaries

- ▶ Binaries with 2 black holes of masses between few M_{Sun} and 100 M_{Sun}, so called "Stellar mass BH Binaries"
- Inspiral: emission in the mHz band

- ► Merger: powerful emission around few tens Hz
 - => many sources already observed
- ► Fast evolution: few years from tens mHz to tens Hz
 - => multi-observatories observations

Stellar mass BH binaries

GW sources

- 6 x 10⁷ galactic binaries
- large number of Stellar Origin BH binaries (LIGO/Virgo)

Supermassive Black Holes

- Observations:
 - Sgr A*: 4.5x10⁶ M_{Sun} at the center of the Milky Way (VLT - Gravity)
 - M87: 6.5x10⁹ M_{Sun} (picture EHT)
- ▶ Supermassive Black Hole are indirectly observed in the centre of a large number of galaxies (Active Galactic Nuclei).
- ▶ Observations of galaxy mergers =>
 - => SuperMassive BH Binaries (SMBHB) should exist.

© EHT (2019)

LISA

Super Massive Black Hole Binaries Sortium

- Gravitational wave:
 - Inspiral: Post-Newtonian,
 - Merger: Numerical relativity,
 - Ringdown: Oscillation of the resulting MBH.

- Duration: between few hours and several months
- ▶ Signal to noise ratio: until few thousands
- Event rate: 10-100/year

Super Massive Black Hole Binaries

LISA: SMBHB from 10⁴ à 10⁷ solar masses in "all" Univers

Super Massive Black Hole Binaries Sortium

GW sources

- 6 x 10⁷ galactic binaries
- large number of Stellar Origin BH binaries (LIGO/Virgo)
- 10-100/year SMBHBs

▶ Capture of a "small"
 object by massive
 black hole (10 – 10⁶ M_{Sun}):
 Extreme Mass Ratio Inspiral

- Mass ratio > 200
- GW gives information on the geometry around the black hole.
- Test General Relativity in stong field
- Frequency: 0.1 mHz to 0.1 Hz

 Large number of source could be observed by space-based interferometer

▶ Capture of a "small"
 object by massive
 black hole (10 – 10⁶ M_{Sun}):
 Extreme Mass Ratio Inspiral

- Mass ratio > 200
- GW gives information on the geometry around the black hole.
- Test General Relativity in stong field
- Frequency: 0.1 mHz to 0.1 Hz

 Large number of source could be observed by space-based interferometer

- Gravitational wave:
 - very complex waveform
 - No precise simulation at the moment
- Duration: about 1 year
- ▶ Signal to Noise Ratio: from tens to few hundreds
- Event rate:from few events per year to few hundreds

GW sources

- 6 x 10⁷ galactic binaries
- large number of Stellar Origin BH binaries (LIGO/Virgo)
- 10-100/year SMBHBs
- 10-1000/years EMRIs

Cosmological backgrounds

- ▶ Potential detection of cosmological background from:
 - First order phase transition in the very earlyUniverse

Cosmic strings network

• ...

Cosmological backgrounds

- Detectability and characterisation: challenging!
 - Separation of the SGWB and instrument noises
 - Noise knowledge? Study of possible calibrations
 - Use of TDI possibilities?
 - Separation from foreground from other sources and residual after the "subtraction" of other sources
 - Data analysis possibility to be deeply investigated

GW sources

GW sources

LISA science objectives

- ► SO1: Study the formation and evolution of compact binary stars in the Milky Way Galaxy.
- ▶ SO2: Trace the origin, growth and merger history of massive black holes across cosmic ages
- ▶ SO3: Probe the dynamics of dense nuclear clusters using EMRIs
- **▶** SO4: Understand the astrophysics of stellar origin black holes
- **▶** SO5: Explore the fundamental nature of gravity and black holes
- **▶** SO6: Probe the rate of expansion of the Universe
- ► SO7: Understand stochastic GW backgrounds and their implications for the early Universe and TeV-scale particle physics
- **▶** SO8: Search for GW bursts and unforeseen sources

LISA at ESA

- \triangleright 25/10/2016 : Call for mission
- ▶ 13/01/2017 : submission of «LISA proposal» (LISA consortium)
- ▶ 8/3/2017 : Phase 0 mission (CDF 8/3/17 \rightarrow 5/5/17)
- ▶ 20/06/2017 : LISA mission approved by SPC
- ▶ 8/3/2017 : Phase 0 payload (CDF June \rightarrow November 2017)
- ▶ 2018 \rightarrow 2021 : phase A: payload study + competitive studies for 2 primes
- ▶ $2021 \rightarrow 2023$: phase B1
- **▶** 2024 : mission adoption
- **▶** During about 10 years : production: challenge (3 S/Cs with 2 MOSAs)
- **▶** 2034 : launch Ariane 6.4
- ▶ 1.5 years for transfert
- ▶ 6 12 months for commissioning
- ▶ 4-6 years of nominal mission (75% duty cycle)
- cycle)

GW observations!

▶ Possible extension to 10 years

LISA timeline

- ► Activities during the phase A:
 - Scope, first definitions, organisation, performances, ...
 - For the ground segment:
 - first mission of this kind + large number of overlapping sources: challenge
 for data analysis => development and prototyping started very early
 - Support & contribution to Consortium activities: figure of merits, performance model, simulations, ...

Organisation of LISA

LISA Consortium

- ► Currently 1439 members
 - 655 full members committing time to LISA Consortium activities
 - 774 associates

SA - A. Peti

Consortium Organisation

LISA Working Groups

- Large number of members :
 - Astrophysics: 502
 - Cosmology: 330
 - Fundamental Physics: 354
 - Waveforms: 212
 - LISA Data Challenge: 237
- ▶ And active:
 - Regular workshops
 - Producing white papers: state of the art of LISA Science
 - Multiple projects within groups

Conclusion

- ▶ LISA mission is in phase A and progressing well for a launch in 2034.
- ▶ No critical technology but complexity in the high level of integration.
- ▶ Instrument is the payloads + the spacecrafts + on ground processing to suppress dominant noise
- ► Complex processing to suppress noises and extract GW sources
- ► LISA will observe a large number and variety of GW sources in the frequency band 10⁻⁵ to 1 Hz
- ► Stochastic GW Background: LISA has a huge potential but extracting SGWB for LISA data is challenging.

Thank you

