

1) GF beam as RIB driver

2) Ion catcher cell: HADO-CSC

3) Extraction challenges: space charge

4) Production rates and comparisons

D. Nichita et al., arXiv:2105.13058 (submitted to Annalen der Physik)

GF beam as RIB driver

ISOLDE Collaboration Meeting

Paul Constantin | ELI-NP

Energy – angle correlation:

$$E_{\gamma} = \frac{4\gamma_L^2 E_l}{1 + \gamma_L^2 \theta_{\gamma}^2} \longrightarrow E_{\gamma}^{max} = 4\gamma_L^2 E_l$$

Divergence: $\sigma \sim 1/\gamma_L \rightarrow \sigma \sim 0.3 \ mrad$

GF beam as RIB driver

Energy – angle correlation:

$$E_{\gamma} = \frac{4\gamma_L^2 E_l}{1 + \gamma_L^2 \theta_{\gamma}^2} \longrightarrow E_{\gamma}^{max} = 4\gamma_L^2 E_l$$

Divergence: $\sigma \sim 1/\gamma_L \rightarrow \sigma \sim 0.3 \ mrad$

Energy interval tunable by θ_{max} and E_{beam} choice.

PSI γ beams almost identical to LCB γ beams except: - huge intensity difference: $\sigma \sim 1b \rightarrow \sigma \sim Gb$ - huge primary beam energy difference: $\gamma_L = E/M \rightarrow M_{ion}/M_e \sim 10^5$

GF beam as RIB driver

Paul Constantin | ELI-NP

Energy – angle correlation:

$$E_{\gamma} = \frac{4\gamma_L^2 E_l}{1 + \gamma_L^2 \theta_{\gamma}^2} \longrightarrow E_{\gamma}^{max} = 4\gamma_L^2 E_l$$

Divergence: $\sigma \sim 1/\gamma_L \rightarrow \sigma \sim 0.3 \ mrad$

Energy interval tunable by θ_{max} and E_{beam} choice.

PSI γ beams almost identical to LCB γ beams except: - huge intensity difference: $\sigma \sim 1b \rightarrow \sigma \sim Gb$ - huge primary beam energy difference: $\gamma_L = E/M \rightarrow M_{ion}/M_e \sim 10^5$

ISOLDE Collaboration Meeting

HADO-CSC ion catcher gas cell

Target system:

- $-\sigma_{yf}^{(238U)} \approx 1b \rightarrow$ thick target; fast extraction, refractory \rightarrow thin target
- many (~50) thin targets: 3μ m thick UO₂ with 0.5 μ m graphite backing, tilted ~10° wrt beam
- 6 produced and delivered by GSI Target Lab

HADO-CSC ion catcher gas cell

Target system:

- $-\sigma_{vf}^{(238U)} \approx 1b \rightarrow \text{thick target; fast extraction, refractory} \rightarrow \text{thin target}$
- many (~50) thin targets: 3μ m thick UO₂ with 0.5 μ m graphite backing, tilted ~10° wrt beam
- 6 produced and delivered by GSI Target Lab

HADO-CSC gas cell:

collaboration GSI, Giessen Univ, ELI-NP, SOREQ, Jyvaskyla Univ

- fast (~ few ms), broadband extraction \rightarrow electric transport
- cryogenic He operation \rightarrow avoid neutralization, broadband
- orthogonal DC field \rightarrow fast transport; higher rate capability
- wall transport with RF carpets

ISOLDE Collaboration Meeting

Production simulation with Geant4

GEANT4: fission + target E-loss + gas thermalization *P. Constantin et al., NIM B 397 (2017) 1-10*

Production simulation with Geant4

GEANT4: fission + target E-loss + gas thermalization *P. Constantin et al., NIM B 397 (2017) 1-10*

optimal gas cell transversal size: 25 x 25 cm at 300 mbar & 75 K (He) 50 x 50 cm full size

Production simulation with Geant4

GEANT4: fission + target E-loss + gas thermalization *P. Constantin et al., NIM B 397 (2017) 1-10*

optimal gas cell transversal size: 25 x 25 cm at 300 mbar & 75 K (He) 50 x 50 cm full size

For a beam intensity of $10^{17} \gamma$ /s and a distance IP-target of 100 m: 3% on targets, **10¹² FF/s** released from targets

Space charge effects

- during their stopping, FFs create a cloud of He_3^+ ions
- when induced electric field \approx external electric field \rightarrow large drop in extraction efficiency

Space charge effects

- during their stopping, FFs create a cloud of He_3^+ ions
- when induced electric field \approx external electric field \rightarrow large drop in extraction efficiency
- previous studies: ~ 10^{15} He₃⁺/s for HADO-CSC (~4 orders of magnitude above current CSC)

Space charge effects

- during their stopping, FFs create a cloud of He_3^+ ions
- when induced electric field \approx external electric field \rightarrow large drop in extraction efficiency
- previous studies: ~10¹⁵ He₃⁺/s for HADO-CSC (~4 orders of magnitude above current CSC)
- estimate for HADO-CSC with GF beam: 10^{12} ions/s with $\langle E \rangle \approx 40$ MeV create $3 \cdot 10^{17}$ He₃⁺/s

Space charge effects

- during their stopping, FFs create a cloud of He_3^+ ions
- when induced electric field \approx external electric field \rightarrow large drop in extraction efficiency
- previous studies: ~ 10^{15} He₃⁺/s for HADO-CSC (~4 orders of magnitude above current CSC)
- estimate for HADO-CSC with GF beam: 10^{12} ions/s with $\langle E \rangle \approx 40$ MeV create $3 \cdot 10^{17}$ He₃⁺/s

A full PIC simulation needed with input from Geant4 results: map of charge by ionization + collection of thermalized heavy ions

Extraction simulation with SimIon

PIC simulation for 1 target

Extraction simulation with SimIon

Heavy ions are extracted if they reach the RF carpet with velocity v<50m/s: in our case $\epsilon \approx 0$. 10¹⁷ ions $\approx 10 \text{ mC} \rightarrow \text{huge velocities } (\sim \text{km/s})!$

Paul Constantin | ELI-NP

ISOLDE Collaboration Meeting

Extraction simulation with SimIon

However, the large induced electric fields generate also small extraction times $\tau \approx 1$ ms.

Extraction simulation with SimIon

However, the large induced electric fields generate also small extraction times $\tau \approx 1$ ms. Solution: chop the γ beam 1 ms ON, 1 ms OFF \rightarrow release 5.10¹¹ FF/s (half), but accumulate 3.10¹⁴ He₃⁺/s (0.1%)

Extraction simulation with SimIon

However, the large induced electric fields generate also small extraction times $\tau \approx 1$ ms. Solution: chop the γ beam 1 ms ON, 1 ms OFF \rightarrow release 5.10¹¹ FF/s (half), but accumulate 3.10¹⁴ He₃⁺/s (0.1%) \rightarrow maximum extracted yield ~7.10¹⁰ FF/s, hence $\epsilon \approx 14\%$, for E ≈ 10 V/cm and Q $\approx 0.8\mu$ C

	76Co	78Ni	90Zr	110Zr	132Sn	136Sn	160Ce
(Z,N)	(27,49)	(28,50)	(40,50)	(40,70)	(50,82)	(50,86)	(58,102)
GF [i/s]	8·10 ³	3.104	15	178	7.10^{7}	9·10 ⁴	238
ISOLDE [i/µC]	NA(55-57)	NA(56-70)	NP	NP	3.108	$4 \cdot 10^{3}$	NA(133)
FRIB [i/s]	0.1	7	8.10^{9}	36	1.10^{6}	29	0.1
CARIBU [i/s]	NP	NP	NA(97-105)	NA(97-105)	$2.4 \cdot 10^{3}$	NA(126-134)	NA(143-153)

ISOLDE: http://isoyields-classic.web.cern.ch/query_tgt.htm FRIB: "Ultimate yields for stopped beams" https://groups.nscl.msu.edu/frib/rates/fribrates.html CARIBU: "Low energy" https://www.anl.gov/atlas/caribu-beams

Paul Constantin | ELI-NP

nuclear physics

Conclusions

- continuous 10¹⁷ γ /s and distance 100 m: 10¹² FF/s released, 3·10¹⁷ He₃⁺/s space charge $\rightarrow \epsilon \approx 0$
- same beam, but chopped 1 ms ON/OFF: $5 \cdot 10^{11}$ FF/s released, $3 \cdot 10^{14}$ He₃⁺/s space charge $\rightarrow \epsilon \approx 14\%$
- extracted RIB rate: ~7.10¹⁰ FF/s, quite competitive even on long-term future
- drift time very short: $\sim 1 \text{ ms}$

BUT:

- this is in simulations...
- this operational regime for gas cells with electric transport has never been done
- a small scale prototype to test extraction in such space charge conditions
- instrumentation after the cell, like RF quadrupoles, would also need to be tested

Thank you!

