Time and space characterization of novel TI-LGAD structures before and after irradiation

A. Bisht (FBK)
G. Borghi (FBK)
M. Boscardin (FBK)
M. Centis Vignali (FBK)
F. Ficorella (FBK)
O. Hammad Ali (FBK)
B. Kilminster (UZH)
A. Macchiolo (UZH)
G. Paternoster (FBK)
M. Senger (UZH)

25 Feb 2022

Previous talk on this project: 39th RD50 Workshop @ Valencia (link)
LGAD

- Low Gain Avalanche Detector (LGAD)
- Solid state diode:
 - Very thin active thickness ~40 µm.
 - Gain layer provides gain ~10.
 - Time resolution for 1 MIP ~10-30 ps.

LGAD technology and (x,y,z,t) tracking

- "Plain LGAD": mature technology.
 - CMS ETL
 - Atlas HGTD
- Outstanding time resolution.

Issue: Fill factor
- Inter-pixel distance (IPD) is on the order of 20-50 µm.¹

The “RD50 TI-LGAD Project”

- **Goal:** “Design and production of TI-LGAD with small pixels (<= 100 um) and high Fill Factor (> 80%).”¹

Design patterns

1) **Trenches:**
 - 1.
 - 2.
2) **Contact type:**
 - Ring.
 - Dot.
3) **Pixel border:**
 - trench-gain layer distance.
4) **Trench depth.**

*These design patterns are constant within each sample, here they are drawn all together as in a single sample just to illustrate.

**These cartoons show a simplified/idealized picture and are meant for visualization purposes.

Experimental setup and procedures
TCT setup @ UZH

- Particulars Scanning TCT:
 - Infrared laser (1064 nm).
 - Laser spot Gaussian with\(^1\) \(\sigma \approx 9 \mu m\).
 - Laser splitting+delay\(^2\) with optic fiber for timing measurements provides two pulses separated by 100 ns.

- Custom made passive readout board.
 - Temperature + humidity close to DUT.

- Cividec C2HV amplifier.
 - 2 GHz, 40 dB.

- Oscilloscope WaveRunner 640Zi or 9254M.
 - 4 GHz, 40 GS/s.

- Keithley 2470 bias voltage source.

\(^1\) https://msenger.web.cern.ch/a-spacial-characterization-of-the-tct/
\(^2\) https://msenger.web.cern.ch/laser-delay-system-for-the-scanning-tct/
Low temperature system

- Used for irradiated devices.
- Chiller + peltier cells.
- Temperature and humidity measured on board, 5 mm away from DUT.
- PID control implemented in the computer.

Measurements conditions:
- $T = -20.00 \pm 0.02 \, ^\circ C$
- $H < 1 \%$RH at all times

Example from one of the scans
Samples geometry and laser scans

- 1D linear scan.
- From metal to metal crossing through the window.
- Two geometries:
 1) 2×2 big pixels.
 2) 4×4 small pixels.
- Window is identical in both.
Inter-pixel distance (IPD)

- IPD: Distance between 50% of normalized collected charge of each channel.
- Linear interpolation, not “S function”.
 - Observed deviations from “S”, different for each design pattern and dependent on the bias voltage.

Example from a random scan (non irradiated device)
Scanning at different bias voltages

Example from a random scan (non-irradiated device)
Scanning at different bias voltages

Example from a random scan (non-irradiated device)

Normalize

Bias voltage (V)
- 55
- 73
- 91
- 109
- 127
- 145
- 163
- 181
- 200

Collected charge (V/s)

Normalized collected charge

Laser position (m)
Scanning at different bias voltages

Inter-pixel distance (IPD) depends on bias voltage¹.

Time resolution

- Constant fraction discriminator.
- Time resolution vs laser position.

\[\text{Time resolution} = \frac{\sigma_{\Delta t}}{\sqrt{2}} \]

- Within window (laser in silicon):
 - \(\sim 10 \text{ ps} \) ✔️

Outside window (laser in metal):
- > 10 ns because the software is measuring noise ✔️
Results for non irradiated TI-LGAD
Interpixel distance and time resolution

- Border V2 is always better.
- Deeper trenches are better.
- Contact type “ring” is better.
- Time resolution does not seem to depend systematically on these design parameters.
IV curves

⇒ All devices with “2 trenches” & “pixel border V3” & “contact type ring” went into breakdown at very low voltages (<10 V).

Measurement conditions:
- Devices installed in readout boards.
- All pixels grounded or 50Ω terminated.
- Room temperature (not controlled).
- Light/laser off.
Irradiation campaign
Our irradiation campaign at UZH

- TI-LGADs aimed towards future trackers.
 - Possible replacement of pixel disks of the CMS experiment in Phase-3, with fluence range $3-5 \times 10^{15}$.

- We irradiated with reactor neutrons at JSI to 3 fluences:
 1) 1.5×10^{15} n$_{eq}$/cm2
 2) 2.5×10^{15} n$_{eq}$/cm2
 3) 3.5×10^{15} n$_{eq}$/cm2

- Irradiated devices were kept all the time at -20 °C except for handling, to avoid annealing effects.
Scanning along irradiated devices

- Same procedure and analysis as for non irradiated devices.
- Gain is significantly reduced.
 - SNR worse, still can measure.
- Behavior in inter-pixel area is “washed out”, all look similar now.

Example from one random family of design patterns
(non irrad @ 200 V, irradiateds @ 500 V)
Scanning along irradiated devices: Pixel isolation

Pixel isolation is not affected by radiation.

Example from one random family of design patterns (non irrad @ 200 V, irradiateds @ 500 V)
Time resolution (TCT) vs position

- Time resolution degraded by radiation (yes, that was expected...)
- Still uniform until the edges (the plateaus are not deformed)

![Graph showing time resolution vs laser position]

The time resolution is the value within the plateau. For this example:

- Non irrad: ~ 5 ps
- Irrads: ~ 15-30 ps

Example from one random family of design patterns (non irrad @ 200 V, irradiateds @ 500 V)
Results after irradiation
Collected charge after irradiation

- Before irradiation 8-12 fC @ 200 V (using same calibration).
 - 5-20 times smaller.
- Pixel border V2 seems to be slightly more degraded after irradiation.
Gain after irradiation

- Before irradiation 30-50 @ 200 V (using same calibration).

(Could not measure gain up to highest voltages because the PIN did not withstand. At 600 V the lowest gain is probably ~ 2.)
Time resolution (TCT) after irradiation

- Before irradiation: 4-6 ps @ 200 V.
- Radiation exposure severely affects time resolution.
• IPD “converges” faster to lower values after irradiation.

• IPD is still good.
IV curve after irradiation

- Breakdown voltage moved from ~250 V → ~600 V.

- "Pixel border V3" & "1 trench" showed earlier and smoother breakdown.

- All devices died with current compliance of 10 µA shortly after ~620 V. Before irradiation compliance of 20 µA @ ~250 V did not killed them.
Beta source measurements
Beta setup

- Assembled inside climate chamber at -20 °C.
- DUT mounted in same readout board and with same amplifier as in TCT.
- Reference detector: Calibrated single pad LGAD mounted in “Chubut board”*.
- 74 kBq Sr-90 beta source.
- Oscilloscope triggering in coincidence of DUT and reference.

* Almost a clone of the Santa Cruz board in a smaller layout, the same performance was observed https://github.com/SengerM/ChubutBoard.
Time resolution with beta source

- Time resolution of same devices in TCT setup: 35-50 ps @ 500 V.
- Landau contribution: ~30 ps.
Conclusions

- A comprehensive characterization of novel TI-LGAD devices was performed using a scanning TCT setup.
 - Pixel isolation by trenches is good before and after irradiation.
 - Inter-pixel distance < 4 µm was observed both before and after irradiation, which allows for fine segmentation.
 - Gain performance severely affected by radiation levels studied.
 - Time resolution after irradiation also degraded.

- In samples tested with beta source setup:
 - Time resolution ~50-65 ps values observed using beta setup on most irradiated samples.

- **TI-LGAD is still, after 35 n_{eq}/cm² of neutrons, a promising candidate towards 4D-pixels.**
Acknowledgments

Part of this work has been performed in the framework of RD50 CERN collaboration and the AIDAinnova project.
That’s all,

thank you for your attention
Extra slides
Laser scans

- Trenches provide good isolation.
- Shared signal in the middle is shared due to the size of the laser spot.
- Qualitative similar behavior for all devices.
• Processing in Python using this https://github.com/SengerM/signals.
• Signal is linearly interpolated.
Laser scans

- Steps of 1 µm.
- ~ 50 events at each position.
- Metal-silicon interface as reference:
 - Check laser shape/size.
 - Distance scale correction (2-5%).

Example from a random scan (non-irradiated device)
Collected charge

The value is the average of each scan within the plateau.

BEFORE IRRADIATION

Contact type:
- ring
- dot

Pixel border:
- V2
- V3

Trenches:
- D1
- D2
- D3

Collected charge (C)

Bias voltage (V)
Gain

\[\text{Gain} = \frac{Q_{\text{LGAD}}[V_s](V_{\text{bias}}, \text{laser intensity})}{Q_{\text{PIN}}[V_s](V_{\text{bias}}, \text{laser intensity})} \]

- “Border V2” & “contact ring” show ~ 20% more gain.
Charge calibration

Deposited MPV charge by e^- in silicon:\(^1\):

$$Q_{MPV} = e \cdot \left(31 \ln \left(\frac{d}{1 \, \mu m} \right) + 128 \right) \frac{d}{1 \, \mu m} \frac{d}{3.65}$$

\(\Rightarrow 1\text{MIP} \approx 0.49 \, \text{fC}\)

β source

$D=45 \, \mu m$ (for all devices of this production)

Deposited MPV charge by e^- in silicon:\(^1\):

$Q_{MPV} = e \cdot \left(31 \ln \left(\frac{d}{1 \, \mu m} \right) + 128 \right) \frac{d}{1 \, \mu m} \frac{d}{3.65}$

$\Rightarrow 1\text{MIP} \approx 0.49 \, \text{fC}$

β source

$D=45 \, \mu m$ (for all devices of this production)

$Q_{MPV} = e \cdot \left(31 \ln \left(\frac{d}{1 \, \mu m} \right) + 128 \right) \frac{d}{1 \, \mu m} \frac{d}{3.65}$

$\Rightarrow 1\text{MIP} \approx 0.49 \, \text{fC}$

PIN @ 100 V, beta source

$[\text{Coulomb}] \approx [\text{Vs}] \frac{0.49 \, \text{fC}}{32 \, \text{pVs}}$

Laser intensity calibration

PIN used: Wafer 7, P250_4×4_1, 45 µm, D2, 1 trench, V3, dot

From the fit:
\[x_{\text{MPV}} = 32 \text{ pVs} \equiv 1 \text{ MIP} \]
Annealing

A set of 3 devices sharing the same design patterns, each with a different fluence, was annealed at room temperature for 7 days.

- Slight improvement of bias current.
- Less gain.
Annealing: Time resolution and IPD

- Time resolution is worse after annealing (see plot).
- Inter-pixel distance shows no changes after annealing.
Data example from one beta scan

- Same constant fraction discriminator algorithm applied to TCT data was used here.
- This time “pulse 1” and “pulse 2” were “pulse DUT” and “pulse reference”.

![Graph showing probability density and collected charge](image1)

![Graph showing amplitude over time](image2)

- Check the langauss distribution is not cut.
- Reference

- Fit Gaussian & extract sigma

- Repeat for every k_1, k_2 and pick the best.