

CHARACTERIZATION OF PLANAR AND 3D SILICON PIXEL SENSORS FOR THE HIGH LUMINOSITY UPGRADE OF THE CMS EXPERIMENT AT LHC

<u>Davide Zuolo</u> INFN Milano Bicocca On behalf of the CMS Tracker Upgrade Group

Davide Zuolo - VCI2022

High Luminosity upgrade of the CERN-LHC

Operation conditions	Sensor design constraints	
Luminosity 7.5 x 10 ³⁴ cm ⁻² s ⁻¹ , up to 200 collisions per 25 ns bunch crossing	Maintain occupancy at per mille level and increase the spatial resolution \rightarrow pixel cell size reduced from 100 x 150 μ m ² to 25 x 100 μ m ² or 50 x 50 μ m ²	
Radiation level for first pixel layer after Run4+5 (2200 fb ⁻¹): 1.9 x 10 ¹⁶ n _{eq} /cm ² → carrier lifetimes ~ 0.3 ns, mean free path ~ 30 µm for electrons at saturation velocity	Reduce distance between electrodes to increase the signal → thin planar or 3D columnar technologies	
	$n^{+} \operatorname{MIP} n^{+} p^{+} \operatorname{MIP} n^{+} p^{+} \operatorname{MIP} \operatorname{n^{+}} p^{+} \operatorname{MIP} \operatorname{MIP} \operatorname{n^{+}} p^{+} \operatorname{MIP} \operatorname{MIP} \operatorname{n^{+}} p^{+} \operatorname{MIP}$	

The CMS Inner Tracker (IT) for HL-LHC

- Upgrade of the CMS Tracker documented in <u>this</u> Technical Design Report
- 25 x 100 x 150 μm³ planar sensors baseline choice for the CMS IT
 - 3D sensors are investigated as an option for the first layer
 - 50 x 50 x 150 μm³ option discarded since marginal gain does not justify introduction of additional design

Planar sensors - generalities

- Floating zone n+ on p type
 - collect electrons, the faster carriers
 - avoid type inversion after irradiation
 - single sided process \rightarrow much less expensive than double sided
- Fondazione Bruno Kessler (FBK) foundry employs Direct Wafer Bonding technology

3D sensors - generalities

Single-sided DRIE process optimized by FBK → much less expensive than double-sided

Rectifying n+ columnar implant Non rectifying p+ columnar implant

The RD53A ROC

The RD53A ROC has a pitch of 50 x 50 μm² and **can be operated at thresholds lower than 1000 electrons before irradiation and 1500 electrons after irradiation, depending on the fluence.**

Sensors bonded to this ROC have been irradiated to fluences up to 24 x 10^{15} n_{eq}/cm².

Only measurements on the Linear Front End will be shown

FBK planar sensors - design

- DUT C → 25 x 100 Standard (100 µm thickness) → 7.5 x $10^{15} n_{eq}/cm^2$
- DUT E → 25 x 100 Bitten (150 µm thickness) → 11 x $10^{15} n_{eq}/cm^2$
- DUT F → 25 x 100 Standard (150 µm thickness) → 18 x 10^{15} n_{eq}/cm²
- DUT G → 25 x 100 Bitten (150 µm thickness) → 24 x $10^{15} n_{eq}/cm^2$
- Bitten design introduced to reduce cross talk observed in previous measurements

FBK planar sensors - efficiency

Cluster size reaches ~ 1.5 at around 15 deg \rightarrow measured resolution around 6 µm Resolution for fresh sensors is measured to be around 2 µm (at the optimal angle), compatible with simulation expectation

HPK planar sensor - design

 $25 \times 100 \,\mu\text{m}^2$, bitten without bias dot

 $25 \times 100 \ \mu m^2$, bricked without bias dot

Bricked design introduced to increase resolution in the long pitch direction Possible application in central part of the barrel detector

Fresh sensors

Vbias = 120 V

Online threshold 750-1100 electrons Bricked 25 x 100 same resolution of 50 x 50 for turn angles > 15 deg

HPK planar sensor - efficiency

Online threshold 1100-1300 electrons

Vbias for 99% detection efficiency:

400 V @ 8 x 10¹⁵ n_{eq}/cm²

550 V @ 12 x 10¹⁵ n_{eq}/cm²

Highest irradiated sensor reaches 98% efficiency at 650 V → reaches 99% when tilted Compatible with FBK sensors

HPK planar sensor - resolution

Resolution along the 100 µm direction 35 30 25 [**u***™*] -Bitten, $\Phi_{eq} = 1.2 \times 10^{16} \text{ cm}^{-2}$ >15 Bricked, $\Phi_{eq} = 1.2 \times 10^{16} \text{ cm}^{-1}$ **A**-Bitten, $\Phi_{ea} = 2.0 \times 10^{16} \text{ cm}^{-2}$ 10 10 12 14 16 18 (cluster size)_y 0.5 10 12 14 16 18 2 0 6 Turn [deg]

Sensors irradiated at $12 \times 10^{15} n_{eq}/cm^2$ show a • resolution of 5 µm at the expected angle (~9 deg)

- Bricked sensor features higher cluster size and hence better resolution than bitten sensors
 - Improvement in resolution diluted after radiation

LFoundry planar sensors - design

- Passive CMOS sensor in 150 nm technology, 150 µm thickness
- Cost-effective and high-throughput commercial process
- Possible implementation of small on-pixel structures
 - multiple metal layers for signals routing \rightarrow more freedom to optimize sensor design
 - high resistive poly-silicon used as bias resistors

 better hit efficiency than with punch through structures
 - MIM-capacitors \rightarrow AC-coupled sensors possible \rightarrow leakage current not flowing in the chip \rightarrow CMS will adopt DC-coupling since sensors' leakage current can be tolerated by the ROC

LFoundry planar sensors - efficiency

Online threshold 1200-1300 electrons Vbias for 99% detection efficiency: $450 V @ 10 \times 10^{15} n_{eq}/cm^2$ compatible with HPK and FBK sensors

In-pixel efficiency is uniform at the highest bias voltage → reduced charge sharing leads to reduced efficiency in the corners

^{24/02/22} Davide Zuolo - VCI2022

LFoundry planar sensors - resolution

the highest irradiation fluences

- Rectangular sensor irradiated at 2 x 10^{15} n_{eq}/cm² reaches 2 µm resolution at around 12 deg
- Rectangular sensor irradiated at 10 x $10^{15} n_{eq}/cm^2$ reaches 4 μm resolution at around 17 deg
- Reduced charge sharing → higher angle for optimal resolution

FBK 3D sensors - CERN TB

Irradiation fluence: $15 \times 10^{15} n_{eq}/cm^2$ - normal incidence

In-pixel efficiency map @ 150 V - 1400 electrons threshold

In-pixel charge map @ 150 V - 1400 electrons threshold

FBK 3D sensors - CERN TB

Irradiation fluence: $15 \times 10^{15} n_{eq}/cm^2$

99% detection efficiency reached a 8 deg tilt (no data acquired at smaller angles)

Measured resolution is ~5 µm, compatible with planar sensor

FBK 3D sensors - DESY TB

First measurements on irradiated sensors coming from this production \rightarrow more sensors ready for irradiation and beam test in the next month(s) Sensors coming from newest FBK production \rightarrow increased distance between n+ type column and low resistivity wafer

 $14 \ x \ 10^{15} \ n_{eq}/cm^2$: 99% efficiency at Vbias 130 V

 $18 \ x \ 10^{15} \ n_{eq}/cm^2$: 98% efficiency at Vbias 170 V

Noise in 3D sensors

FBK - Stepper 2 - 14 x $10^{15} n_{eq}/cm^2$

FBK - Stepper 2 - 18 x $10^{15} n_{eq}/cm^2$

- During test beam characterizations of 3D sensors at CERN and DESY in Autumn 2021 a sudden increase in the number of noisy pixel at high bias voltages was observed
- TID for irradiations with low energy protons (KIT, 23 MeV) 1.5 GRad per 10 x 10¹⁵ n_{eq}/cm² → higher than RD53A tolerance (1 Grad)
- Action items in progress
 - irradiate samples with higher energy protons (Fermilab ITA, 400 MeV)
 - measure noise in planar sensors to eventually rule-out ROC irradiation effects
 - measure IV curves to investigate possible correlation with breakdown

Power dissipation simulation

- Barrel Layer 1
- planar sensors: T_{CO2} required to prevent thermal runaway is much lower than -33 °C achievable
- 3D sensors: at least 4 °C margin if the power dissipated in the active volume of the sensor is less than 20 mW/cm² after 2 x 10¹⁶ n_{eq}/cm²
- power dissipation <20 mW/cm² confirmed by lab measurements

Conclusions

- Planar sensors
 - Irradiation up to 24 x 10^{15} n_{eq}/cm² \rightarrow detection efficiency in line with specification
 - 99% for Vbias > 350 (550) V @ 8 x $10^{15} n_{eq}/cm^2$ (12 x $10^{15} n_{eq}/cm^2$)
 - 98% for Vbias > 650 V for fluence > 20 x 10^{15} n_{eq} /cm²
 - **resolution** of irradiated sensor in the range 4 -- 6 μm depending on the fluence
- 3D sensors
 - irradiation up to 15 x 10^{15} n_{eq}/cm² \rightarrow 99% detection efficiency for Vbias > 130 V
 - performance at higher fluence to be verified in next test beams (only one sample at the moment)
 - resolution compatible with planar sensor
- Choice to be made in the coming months
 - 3D sensors in barrel layer 1
 - bricked pixels only in the central η region of TBPX L2-L3-L4
 - inputs from more test beam campaigns and simulation (tracking, vertexing, object reconstruction)

Acknowledgements and Blibliography

- Lfoundry: <u>https://arxiv.org/abs/2111.07797</u>, <u>https://cds.cern.ch/record/2799582/files/CR2021_260.pdf</u>
- FBK: <u>10.1016/j.nima.2019.163222</u>
- HPK: <u>https://doi.org/10.1016/j.nima.2020.164438</u>
- FBK Team: Maurizio Boscardin, Matteo Centis Vignali, Francesco Ficorella, Sabina Ronchin

Additional material

HL-LHC at a glance

 Ultimate

 RUN 4
 RUN 5
 RUN 6

 Per run (fb⁻¹)
 850
 1350
 1900

 Accumulated (fb⁻¹)
 850
 2200
 4100

	1E16 1 MeV n_eq	Grad
BPIX L1 Run 5	1.16	0.63
FPIX R1 Run 4+5	1.25	0.81
BPIX L1 Run 4+5	1.88	1.03
FPIX R1 Run 4+5+6	2.34	1.50
BPIX L1 Run 4+5+6	3.51	1.91

- Fit two tracks using upstream and downstream triplets
- Compute distance between the two impact points at the DUT ("sixdxc")
- The DUT residual is computed as the difference between the measured coordinate and the mean values of the track impact points coordinate predicted by the upstream and downstream triplets
- The tracking error at the DUT is hence half the RMS of the distribution of sixdxc
- A student-t function is used for the fit

Resolution measurement@DESY - 2

FBK fresh sensors - resolution

HPK fresh sensors - resolution

σ_x : Resolution along short axis (25 μ m)

Cross talk - test bench measurements

Cross talk - test bench measurements

Bias Voltage	Main Threshold	Second Threshold	X-Talk
Planar 25x100 Standard (SOI)			
40 V	1140 e	8140 e	12.3%
20 V	2050 e	15294 e	11.8%
Planar 25x100 Bitten Implant			
40 V	1114 e	11388 e	8.9%
20 V	2303 e	22530 e	9.3%

Bitten implant reduces the x-talk by few %

Bricked sensors

- barrel: no advantage in using bricked for η≥0.62 (cotg β=100um/150um)
- endcaps: small/no charge sharing
 → no advantage in using bricked for η≤1.8
- Positioning of the modules with bricked pixels, especially in the endcaps, requires a lot of care → barrel only studies
- bricked pixels option brings challenges in the offline reconstruction as it couples the two coordinates and therefore they are more difficult to model after irradiation