

Operating the Resistive Plate Chambers with new eco-gas mixtures

Outline

- Performance of the Resistive Plate Chambers with the standard gas mixture
- Decreasing the Global Warming Potential and Ozone Depletion Potential: the $C_2H_2F_4$ and SF_6 substitutes
- Experimental set-up
- Analysis criteria
- Results

The Resistive Plate Chambers (RPC)

- Gas gap
- Parallel resistive electrodes
- Insulating layer
- Read-out strips

- Internal surface: linseed oil
- External surface: graphite

- Electron-ion recombination processes with UV photon emission
- Streamer formation

Operating RPC in avalanche mode with the "standard" gas mixture

The standard gas mixture is composed of $C_2H_2F_4$ (TFE)/i- C_4H_{10} /SF₆

- High gas density ensuring sufficient primary ionization even for gas gaps in the millimeter range size;
- Prompt charge slowly increasing with the applied voltage and high enough to overcome the FE threshold;
- Total delivered charge, dominated by the ionic charge, low enough to ensure modest working current and good rate capability;
- Comfortable avalanche-streamer separation
- Non-flammable and made of industrial components

New eco-gas mixtures for RPC

The standard gas mixture has a high Global Warming Potential (GWP)

Substitute $C_2H_2F_4$ with an environment-friendly gas mixture

- CO_2 / $C_3H_2F_4$ (HFO1234ze) + i- C_4H_{10} + SF_6 GWP ~ 200

Substitute the SF_6 with a different environment-friendly gas : the Chloro-trifluoropropene $C_3H_2ClF_3$ (HFO1233zd)

- $CO_2 / C_3H_2F_4$ (F-HFO) + $i-C_4H_{10} + C_3H_2ClF_3$ (CI-HFO)

Experimental apparatus (I)

- Three 2 mm gas gap RPCs in coincidence, forming the *trigger*
- One 0.5 mm RPC (confirm chamber)
- Detector under test: 2 mm gas gap RPC
- Oscilloscope (Bandwidth: 3 GHz; Sampling velocity: 20 Gs/s)

Trigger

The 0.5 mm RPC is used as:

- Fourth trigger chamber for the efficiency measurement;
- Time reference

RPC under test

Ionic signal :read out on a resistance on the ground graphite electrode equal to 10 kOhm

- Dimensions : $(57 \times 10) \text{ cm}^2$
- Gas gap width: 2 mm
- Electrode thickness: 1.8 mm

Read-out strip

- Prompt signal without amplification
- Efficiency measurement: maximum oscilloscope sensitivity
- Streamer analysis: oscilloscope variable scale

Oscilloscope

Analysis criteria

- Detection efficiency: signals which cross an amplitude threshold equal to 5 times the Root Mean Square (RMS) of the background amplitude.
 - The background amplitude is calculated in a time window of 30 ns which anticipates the avalanche signal
 - $5*\overline{RMS}$ in the whole data taking is ~ 0.85 mV
 - Only the events in which the confirm chamber is efficient have been considered in the analysis
- Charge study: charge integrated in a time window of:
 - 170 ns for the prompt signal
 - 85 μ s for the ionic signal

Signals classification: the transition events

 Avalanche: very short single signal Transition signal: multiple avalanche signal and/or a large tail following the precursor

• Streamer: avalanche signal precursor followed by a signal lasting tens of ns.

Algorithms, based on duration and charge, have been developed to distinguish and classify these three event categories

Data analysis overview (I)

Gas mixtures tested: F-HFO/CO₂/i-C₄H₁₀/CI-HFO

• F-HFO/i- C_4H_{10} at a fixed ratio of (15/7) %+ variable ratio of CO_2 /CI-HFO in the range (78/72) %/(0-6) %

Quantities studied:

- Detection efficiency
- Streamer and transition event probability
- Total charge delivered inside the gas
- Time resolution

Signals classification

Signal type	Prompt charge (pC)	Time over threshold (ns)	Exceeding charge (*)		
Avalanche	≤ 5	< 12	_		
Transition	5 < q < 30	> 12	> 0.21		
Streamer	≥ 30	≥ 30	_		

RPC operating with CO_2 /F-HFO/ i- C_4H_{10} /Cl-HFO: Efficiency

- The operating voltage increases at the rate ~ 400 V/1% CI-HFO;
- The detection efficiency is at least 93% for all the gas mixtures;
- The mixture not containing CI-HFO shows an overlapping between avalanche and streamer mode (35% streamer contamination at the plateau knee);
- The separation between avalanche and streamer mode is ~ 400 V for all gas mixtures.

RPC operating with CO_2 /F-HFO/ i- C_4H_{10} /Cl-HFO: impact on the performance of the transition events

- The transition event probability decreases when streamers start to appear;
- The transition event are less than 20% at the operating voltage for all gas mixtures;
- The time over threshold of transition events is less than 25 ns.

RPC operating with CO_2 /F-HFO/ i- C_4H_{10} /Cl-HFO: lonic charge

- The ionic charge of the mixture without CI-HFO reaches very high values (~ 75 pC) at low efficiency
- The mixture with 5% and 6% CI-HFO have an ionic charge more than 30 pC at the first plateau value
- The mixture with 1% CI-HFO shows the lowest ionic charge for $\epsilon < 94\,\%$
- The mixture with 2% CI-HFO shows the lowest ionic charge for $\epsilon > 94\,\%$

RPC operating with CO_2 /F-HFO/ i- C_4H_{10} /Cl-HFO: Considerations and choice of the best mixture

- The gas mixtures studied show a comfortable avalanche-streamer separation range and have a detection efficiency $\epsilon > 90\,\%$
- The transition event probability is less than 20% for $\epsilon < 95\,\%$
- The mixture with 2% CI-HFO shows the lowest ionic charge.

		% Cl-HFO	0	1	2	3	4	5	6
Efficiency 90%	streamer(%)	20	0	0	0	0	0	0	
	transition event (%)	0	11	5	5	7	25	9	
Efficiency 95%	05%	%streamer	86	5	0	2	1	2	0
	%transition event	0	50	45	54	57	74	60	
Efficiency 96%	%streamer	92	20	2	4	2	4	1	
	90%	%transition event	0	51	57	65	70	77	70
		-							

	% Cl-HFO	0	1	2	3	4	5	6
Efficiency 90%	Ionic charge (pC)	45	15	20	20	23	30	24
	Prompt charge (pC)	27	2.4	2	2.2	2.7	4	2.5
Efficiency 95%	Ionic charge (pC)	240	40	36	39	42	52	45
	Prompt charge (pC)	209	10	6	7	7	9	7
Efficiency 06%	Ionic charge (pC)	270	70	42	48	50	62	53
Efficiency 96%	Prompt charge (pC)	241	19	8	9	9	11	9

Best operating performance mixture : CO_2/F -HFO/ i- C_4H_{10}/CI -HFO = (76/15/7/2)%

Best gas mixture: Prompt charge distribution

• Charge saturation for $\epsilon \leq 90\%$

Comparison between eco and standard gas mixtures

- The efficiency curve has a faster rise with the standard mixture
- The avalanche-streamer separation with the standard gas is significantly larger than in the eco-mixture
- The fraction of transition events is much smaller with the standard gas
- The growth of the ionic charge is faster with the eco mixture

Comparison between eco and standard gas mixtures: Time resolution

• Time resolution measured with the time of flight (TOF) method, using the 0.5 mm gas gap as time reference

$$\sigma_{\rm t}^{\rm Eco} = (0.83 \pm 0.03) \rm ns$$

 $\sigma_{\rm t}^{\rm STD} = (1.09 \pm 0.07) \rm ns$

- These TOF distributions do not contain any kind of corrections for systematic effects
- The eco-mixture has a better time resolution

Comparison between CI-HFO and SF6

Mixture under study: $F-HFO/CO_2/i-C_4H_{10}/SF_6$ and $F-HFO/CO_2/i-C_4H_{10}/CI-HFO$

- $HV_{Cl-HFO} = (450 + HV_{SF_6})V$
- Plateau knee at 90% efficiency for both gas mixtures, followed by a slow increase up to 96%
- Avalanche-streamer separation ~350 V for both mixtures
- Same ionic charge at the same efficiency value

Conclusions

New eco friendly gas mixtures composed of $CO_2/C_3H_2F_4/i - C_4H_{10}/C_3H_2ClF_3$ have been tested. These mixtures have an Ozone Depletion Potential = 0 and a Global Warming Potential ~ 10.

- The voltage separation between avalanche and streamer mode is smaller compared with that of the standard gas (~350 V vs ~ 1 kV), but sufficient to insure a streamerless operation in avalanche mode
- The SF_6 can be replaced by the CI-HFO molecule with no effect on the performance;
- The new gas shows a better time resolution with respect to the standard gas ($\sigma_{\rm t}^{\rm Eco} = (0.83 \pm 0.03) \, {\rm ns}$, $\sigma_{\rm t}^{\rm STD} = (1.09 \pm 0.07) \, {\rm ns}$)

Thank You

Backup

Comparison between eco and standard gas mixtures: Conclusions

- The efficiency curve is sharper with the standard mixture;
- The avalanche to streamer separation in the eco gas is significantly smaller than in the standard mixture;
- The fraction of the transition events is much smaller in the standard gas;
- The mixture with 2% CI-HFO shows a charge saturation for $\epsilon \leq 90\%$;
- We observed a better time resolution with the eco-mixture

Optimize the eco gas mixture for the RPC

- 1. Test on a 2 mm gas gap RPC operating with $\rm CO_2/HFO1234ze/I-C_4H_{10}/SF_6$ with a low concentration of HFO1234ze (F-HFO) to minimize aging effects:
 - No significant change in performance with a F-HFO concentration F-HFO in the range (15-25) %

https://www.sif.it/riviste/sif/ncc/econtents/ 2021/044/02-03/article/42

- 2. Test on a 2 mm gas gap RPC operating with $CO_2/I-C_4H_{10}/H$
 - CI-HFO concentration must be < 10%

Efficiency as a function of the high voltage

https://arxiv.org/pdf/2006.00331.pdf

Mixtures under test

 CO_2 /F-HFO/i- C_4H_{10} /CI-HFO

• CI-HFO/CO₂ concentrations varying in the range (0-6)%/ (78/72)%

Data analysis overview (II)

- ullet Performance of the RPC operating with gas mixtures composed of CO_2 /F-HFO/i- $\mathrm{C}_4\mathrm{H}_{10}$ /CI-HFO
- · Comparison between the eco-mixture with the best performance and the standard gas mixture
- Direct comparison of the performance with SF_6 and CI-HFO

The Resistive Plate Chambers (RPC)

- Gas gap
- Parallel resistive electrodes
 - Internal surface: linseed oil
 - External surface: graphite
- Insulating layer
- Read-out strips

- Primary ionization
- Electron acceleration and avalanche charge formation:
 - Saturated avalanche mode
 - Electron-ion recombination processes with UV photons emission
 - Streamer formation

Optimize the eco gas mixture for the RPC

- 1)first step: Test RPC with a low concentration <u>low</u> <u>HFO1234ze</u> (F-HFO) to minimize aging effects:
 - No significant change in performance with a concentration F-HFO in the range (15-25) F-HFO %->higher hv 25% plateau at 10.5kv 8.6 kv freccia e titolo plot
 - 2)second step increasing I- C_4H_{10} includi sopra sots:
 - Both streamer fraction and total charge drastically reduced
- 2) Very preliminary <u>test on HFO1233zd</u> (CI-HFO): metti plot specifica miscela
- The CI-HFO concentration must be < 10%

...to the choice for this test

- F-HFO and i- C_4H_{10} concentrations fixed at 15/7
- CI-HFO concentration within the range (0-6)%

RPC operating with CO_2 /F-HFO/ i- C_4H_{10} /Cl-HFO: lonic charge

- The ionic charge of the mixture without CI-HFO reaches very high values (~ 75 pC) at low efficiency
- The mixture with 5% and 6% CI-HFO have an ionic charge more than 30 pC at the first plateau value
- The mixture with 1% CI-HFO shows the lowest ionic charge in the first three points but a faster rise
- The other mixtures shows an ionic charge between 20 and 30 pC up to 300 V above the operating voltage

RPC operating with CO_2 /F-HFO/ i- C_4H_{10} /Cl-HFO: Fit analysis (I)

 The efficiency curves after the alignment have the same profile

Fit function

$$f(x) = \frac{p_0}{1 + e^{\frac{p_1 - x}{p_2}}} + \frac{1 - p_0}{1 + e^{\frac{p_3 - x}{p_4}}}$$

- Streamer probability vs HV
 Fermi function
- Transition event probability vs HV Landau
- Prompt and ionic charges vs HV Multi-degree polynomial fit

RPC operating with CO_2 /F-HFO/ i- C_4H_{10} /Cl-HFO: Fit analysis (II)

- The streamer curve is faster in the mixture containing 1% CI-HFO
- The mixture with 1% CI-HFO shows the lowest ionic charge for $\epsilon < 94\,\%$
- The mixture with 2% CI-HFO shows the lowest ionic charge for $\epsilon > 94\,\%$

lonic to prompt ratio

htemp

1022 8.35

3.838

Entries

Std Dev

o% HFO1233zd

Entries

