Feb 21 – 25, 2022
Vienna University of Technology
Europe/Vienna timezone

Plastic scintillator production involving Additive Manufacturing

Feb 23, 2022, 4:00 PM
Vienna University of Technology

Vienna University of Technology

Gusshausstraße 27-29, 1040 Wien
Live Presentation Photon Detectors Photon Detectors


Davide Sgalaberna (ETH Zurich (CH)) Umut Kose (CERN EP-NU)


Plastic scintillator detectors are widely used in high-energy physics, often as an active neutrino target, both in long and short baseline neutrino oscillation experiments. They can provide 3D tracking with $4\pi$ coverage and calorimetry of the neutrino interaction final state combined with very good particle identification capabilities and sub-nanosecond time resolution. Moreover, the large hydrogen content makes plastic scintillator detectors ideal for detecting neutrons. However, new experimental challenges and the need for enhanced performance require the construction of detector geometries that are challenging using current production techniques. The solution can be found in additive manufacturing, able to quickly make plastic-based objects of any shape. In this talk, the applicability of 3D-printing techniques to the manufacture of polystyrene-based scintillator will be discussed. We will report the feasibility of 3D printing polystyrene-based scintillator with light output performances comparable with that of detectors manufactured using standard production techniques. The latest advances in R&D aim at combining the 3D printing of plastic scintillator with other materials, such as optical reflectors or absorbers. The status of the R&D and the latest performance results will be presented.

Primary experiment 3DET R&D collaboration

Primary authors

Davide Sgalaberna (ETH Zurich (CH)) Umut Kose (CERN EP-NU)

Presentation materials