VIENNA CONFERENCE ON INSTRUMENTATION

Vacuum-Compatible Ultra-Thin-Wall Straw Tracker; Detector construction, Thinner straw R&D, and the brand-new graphite-straw development

by Hajime NISHIGUCHI, KEK (), J-PARC (, COMET ())

VCI2022, 21-25.Feb.2022, Vienna→Online

Contents

- * Motivation
 - * The COMET Experiment Search for "Muon-to-Electron" Conversion
 - * Extremely Light Material Tracker → *Vacuum-Compatible Ultra-thin Straw*
- * Straw-Tracker Development
 - * Thin-wall / Vacuum-tight Straw Tube
 - * Detector Development; Past Present Future
 - * New Challenge; Graphite straw

Motivation

The COMET Experiment

- * An Experiment to Search for " μ -N \rightarrow e-N" at J-PARC
 - Muon-to-Electron Conversion = Lepton Flavour Violation
 - * Very sensitive to the TeV-scale new physics, BSM

→ Complementary and Competitive to the LHC

The COMET Experiment

- * An Experiment to Search for " μ -N \rightarrow e-N" at J-PARC
 - Muon-to-Electron Conversion = Lepton Flavour Violation
 - * Very sensitive to the TeV-scale new physics, BSM

→ Complementary and Competitive to the LHC

The COMET Experiment

- * An Experiment to Search for " μ -N \rightarrow e-N" at J-PARC
 - Muon-to-Electron Conversion = Lepton Flavour Violation
 - * Very sensitive to the TeV-scale new physics, BSM

→ Complementary and Competitive to the LHC

Need to achieve, at least,
< 200 keV/c for 100MeV/c e⁻

- Material effect (Multiple Scattering: MS) is Essential
 - * Need to be made by a very light material
 - * Gaseous detector is suitable solution, *eg*. drift chamber
 - * Need to be <u>operational in vacuum</u>
 - Required also by particle transportation

Not only COMET, also Mu2e (μ -e conv.), Muon g-2 Fermilab, NA62 CERN ($K^+ \rightarrow \pi^+ \nu \nu$), etc...

* Solution : Vacuum-compatible Straw Tracker made by thin film

Straw-Tracker Development

The COMET Straw Tracker

* Planar wire-chamber-base tracker in Vacuum → Straw Tracker

- * Five super-layers (module) consist of 4 planes of straw tubes
 - * 2 planes for *x*-coordinate and 2 planes for *y*-coordinate, each layers are staggered by half a cell to solve the left-right ambiguity.
- * All tracker modules are installed in **vacuum**.
- * Timing(Trigger) is provided by the electromagnetic calorimeter.

Straw Tube as a Wire Chamber

- Two methods to make a very-thin & gas-tight straw
 - "Doubly-wound" style & "Straight adhesion" style

newly employed straight adhesion

* Doubly-wound type;

- Easily obtained in the commercial market.
- Limit to achieve an extremely thin wall
- Straight-adhesion type;
 - Big advantage from the view point of material budget
 - It was difficult to keep a true circle x-section ← Enabled by NA62
 collaboration by ultra-sonic welding technique.

COMET employs straight adhesion, and aims to achieve an even thiner straw wall

Achievements to make a thin-wall straw

	NA62 straw	COMET straw 20µm	COMET straw 12µm
Mylar wall thickness	36 µm	20 µm	12 µm
Tube diameter	9.8 mm	9.8 mm	5.0 mm
Cathode material	Cu(50nm) + Au(20nm)	Al (70 nm)	Al (70 nm)
Development status	In Operation	Detector Construction	R&D

- Developed "COMET straw 20µm" is employed by "COMET phase-I"
 - COMET employs two-staged approach
 - * Phase-I aims to achieve 10⁻¹⁵ sensitivity and investigate the beam background
 - * Phase-II aims to achieve the final sensitivity, 10⁻¹⁷
- COMET Phase-I straw tracker (^t20μm, φ10mm) is under construction, and new "thinner and smaller" straw (^t12μm,φ 5mm) R&D is ongoing

Development; Past-Present-Future

- ~2016, New straw (^t20um.ol0mm) Development
 * Test in vacuu..., proof of the strain of
- * ~2019, Tracker development and Thinner straw development
 - * Full-scale prototype detector, Test-beam for performance study

କ୍ଟ୍ର ଅଟେ ଅନ୍ତ

4000

Residual for Ar/C2H6=50/50. 1900V

5000 4500

- Thinner straw R&D
 - Started to investigate "thinner an^m/₂ smaller" str^m/₂ w, and Decided to aim "12μm thickness ^m/₂ d 5mm dia^m/₂ eter"

980

4000

3000

Online

4-0.3-0.2-

Reported at

VCI2019

Development; Past-Present-Future

- * Construction of the **Straw Tracker for COMET Phase-I** is ongoing.
- * The 1st station, out of 5 stations, is completed.

- Assembly for 2nd station is ongoing.
- * Will ready for COMET Phase-I commissioning in 2024.

Development; Past-Present-Future

- * New straw R&D is ongoing \rightarrow "12µm thickness and 5mm diameter"
 - * Lead by **JINR COMET straw group** (N. Tsverava *et. al.*)
 - Assembly technique R&D by joint effort with NA62 collaboration at CERN (H. Danielsson *et. al.*)

Hajime NISHIGUCHI (KEK)

"Vacuum-Compatible Ultra-Thin-Wall Straw Tracker Straw Tracker"

0.5

2.5

4.85

Scan points

Even Thinner Straws ?

— for the future experiments —

Technical limitation

- Straight adhesion by ultrasonic welding
 - Maybe) 12µm-thickness is a limit

Seam width is important; Need to be wide enough to keep tightness Need to be narrow enough to keep roundness

- Doubly-wound adhesion
 - * (Maybe) Also close to a limit
 - * Need a glue, cannot reduce a certain amount of glue

Need a Paradigm Shift

Idea of a Seamless Straw

 Paid attention to the "electrospinning" technique by the newest nanotechnology = Popular for non-woven fabric products

Electrospinning is a fiber production method that uses electric force to draw charged threads of polymer solutions or polymer melts up to fiber diameters in the order of some hundred nanometers.

- * By the electrospinning method, we can produce a kind of polymer fabric.
 - by using "a bar (or a tube) target" for electrospinning,
 a seamless and extremely thin polymer tube can be realized !!

Problems to be solved:

Gas-tightness
 Conductivity

The Free Encyclopedia

Can we solve issues? YES

* Gas-tightness

- At the 1st step (polymer fabric), polymer straw is made with a polyamic-acid solution (=base of Polyimide).
- At the 2nd step, by impregnation (soaking) with a polyamic-acid solution into polymer straw, gastight straw is realized.

* Conductivity

- To make it a cathode of wire chamber, inner surface of straw should be metalized.
- ∗ By burning it, it might be carbonized !! → Graphite Straw
 - * A **graphite straw** can make a paradigm shift !!

Hajime NISHIGUCHI (KEK)

"Vacuum-Compatible Ultra-Thin-Wall Straw Tracker Straw Tracker"

Hajime NISHIGUCHI (KEK)

"Vacuum-Compatible Ultra-Thin-Wall Straw Tracker Straw Tracker"

Hajime NISHIGUCHI (KEK)

"Vacuum-Compatible Ultra-Thin-Wall Straw Tracker Straw Tracker"

Hajime NISHIGUCHI (KEK)

"Vacuum-Compatible Ultra-Thin-Wall Straw Tracker Straw Tracker"

Issues still to be solved

- * Roundness
 - * How we can make it roundly ?

- First trial looks very wavy...
- More sophisticated method is necessary...

* Conductivity

- * Electrical conductivity was measured with the first burned samples; 19.8 S/cm for 900°C sample and 439 S/cm for 2,800°C sample, respectively. → Worse than expected
- * Might be caused by a base textile → Possible to make a dense textile at the 1st step.

Conclusions

- Vacuum-compatible Ultra-thin straw is a good tracker for low-energy charged particle tracking, eg. μ-e conversion search, μ g-2, K rare decay, etc.
- COMET experiment developed ^t20µm/φ10mm straw for COMET Phase-I
 After VCI2019, final assembly for COMET Phase-I tracker started.
 The 1st station, completed. Aim to complete 5 stations in 2024.
- Solution New thinner / smaller straw ($^{t}12\mu m/\phi 5mm$) developed at JINR
 - Aim to develop new tracker for COMET Phase-II and NA62-upgrade with a joint effort among KEK/JINR/CERN.

Even thinner straw ?

- Polyimide fabric by a nano-fibre technology can make a paradigm shift !
- Gas-tightness / Conductivity can be realized by carbonization

Graphite Straw !!

Some pilot tests showed promising results, but still many issues we have.

In the next VCI, Hope to report i) completion of Phase-I tracker, ii) development of thinner/smaller straw tracker, and iii) prototype detector of the graphite straw !