The Upgraded ALICE TPC VCI 2022

Philip Hauer on behalf of the ALICE Collaboration

22nd February 2022

Introduction

- Installation status
- Commissioning
- ► X-ray data taking
- Krypton data taking

Picture of the ALICE detector:

TPC

INTRODUCTION

- ► A Large Ion Collider Experiment (ALICE)
 - Dedicated to heavy-ion physics
 - Huge multiplicities (up to 20 000 tracks per collision)
 - Reconstruct all tracks
 - \rightsquigarrow Many talks on this conference
- ▶ Time Projection Chamber (TPC)
 - Gaseous detector
 - Main tracking and PID device
- ▶ During LHC's Run 1 and Run 2: MWPC-based readout
 - Long dead time due to gating grid
 - Or: No gating grid but large space charge distortions
 - \Rightarrow Not suitable for the Pb-Pb interaction rate of 50 kHz foreseen in Run 3
- Upgrade with Gas Electron Multipliers (GEM)

[F. Sauli - NIM A - 1997]

Event Display:

The upgrade of the ALICE TPC with GEMs and continuous readout

ALICE TPC collaboration

INTRODUCTION – TPC

- Cylindrical TPC
 - 5 m outer diameter
 - ▶ 5 m long
 - ▶ Filled with Ne-CO₂-N₂ (90-10-5)
- Charged particles ionise atoms
- Electrons drift towards amplification stage
- Read out of induced signals on 2D pad plane
- A- and C-side split by central electrode

[ALICE TPC Collaboration - JINST 16 - 2021]

INTRODUCTION – GEMS

Amplification stage: GEM foils

- Copper-polyimide-copper sandwich
- Perforated with many holes in photolithographic process
- ► Standard GEM:
 - ▶ Pitch *p* = 140 µm
 - ▶ Outer diameter $d_{\rm out} = 70 \, \mu m$
 - Inner diameter $d_{\rm in} = 50\,\mu{
 m m}$
- If suitable voltage applied between copper electrodes: gas amplification

Standard pitch GEM:

Picture with electron microscope:

[Altunbas et al. - NIMA 490 - 2002]

INTRODUCTION – GEMS IN THE ALICE TPC

- ▶ For ALICE TPC: Large-area GEM foils are used
 - Divided into several high-voltage segments
 - Stability cross to prevent sagging
- R&D investigation
 - ► First GEM TPC: FOPI [B. Ketzer et al. NIMA 869 2017]
 - ► TDR for ALICE TPC [ALICE TPC Coll. CERN-LHCC-2013-020]
 - Stack of four foils: S LP LP S
 - Effective gain ≈ 2000
- \blacktriangleright lon backflow suppressed to $<1\,\%$
 - Important to minimise space-charge distortions
 - Can be corrected for
- \Rightarrow Continuous operation possible

GEM for OROC2:

INTRODUCTION – FECs AND DATA PROCESSING

- New FECs designed and installed
 - New ASIC: SAMPA
 - Preamplifier, shaper and 10 bit ADC
 - Continuous sampling with 5 MHz
- ▶ In total 524160 readout channels (pads)
 - ► 3276 FECs needed
 - ▶ 3.3 TB/s
- \Rightarrow Compress data online
- \rightsquigarrow Presentation by David Rohr

INTRODUCTION – TIMELINE OF THE UPGRADE

INSTALLATION STATUS – GENERAL

- ► TPC is operating successfully
 - > This includes continuous readout (no trigger) with no dead time
 - "Movies instead of pictures"
- Commissioning and calibration ongoing
 - Examples from calibration measurements
 - First results from pp pilot beams

Simulation of a timeframe of 2 ms (with Pb-Pb collisions)

INSTALLATION STATUS – PULSER AND LASER

- Upgraded calibration pulser system is installed
- Voltage pulse injected on GEM4 bottom
 - Signal induced on all pads (capacitive coupling)
 - Used to study timing and shaping for each channel
- Laser system is re-installed
- Artificial tracks created inside TPC
- ▶ In addition: Signal from central electrode
 - Used to measure drift velocity of electrons

[ALICE TPC Collaboration - JINST 16 - 2021]

Commissioning – Noise Studies

Noise (A-Side)

- Pedestals: Offset of the baseline
- Noise: RMS of baseline fluctuations
- $\blacktriangleright\,$ Average noise ≈ 1 ADC count
- Matches with design value of 670e (ENC)
- Only a few regions show higher noise
 - Dots in OROC and L-shape in IROC
 - Reason: Cables of temperature sensors
- Online zero suppression
 - Threshold based on noise of each channel

Calibration of the ALICE TPC

- Measured charge \propto deposited energy (dE/dx)
- \Rightarrow Constant gain required
- But: Gain variations expected
 - Electronic gain in FECs
 - Mechanical imperfections
 - Hole size variations
 - Sagging of foils
 - Charging-up of GEMs
 - Temperature and pressure variations
- ► Calibration required!
 - X-Ray tube
 - ▶ ^{83m}Kr

Philip Hauer

Commissioning – X-Ray Irradiation

- Already during pre-commissioning: Measurements with X-ray tube
 - Only with two sectors simultaneously
- Data very useful
 - to adjust high voltage settings
 - to investigate stability at high loads
 - ▶ to calibrate TPC
- Before installation of ITS: Another measurement campaign with full TPC

Commissioning – X-Ray Irradiation

Mini-X Silver (Ag) X-Ray Tube Output Spectrum

 Characteristic Ag-lines on top of bremsstrahlung background Expectation: No tracks but charge "blobs"

- Implemented a dedicated 3D cluster finder
- Analyse the measured data

Commissioning – X-Ray Irradiation

- ► Four prominent regions:
 - Main peak at \approx 2500 ADC Ch.
 - $\Rightarrow K_{\alpha}$ and K_{β} from Ag X-ray tube
 - ▶ Fluorescence peak at \approx 1000 ADC Ch. ⇒ Origin: Copper (GEMs)
 - ▶ Fluorescence peak at ≈ 1300 ADC Ch.
 ⇒ Origin: Bromine (vessel material)
 - Exponential at low energies
 - \Rightarrow Compton effect
 - ⇒ Low energetic X-ray lines (energy too high for noise and cosmics)

X-RAY – COARSE GAIN EQUALISATION

Developed fit model

- Main peak used for coarse gain equalisation
 - Spectrum for each stack
 - Stack-by-stack gain variations
 - ▶ Was used for tuning HV settings
 - ▷ Uniform potential on GEM1T

X-Ray – Pad-by-Pad Gain Map

Commissioning – Krypton Calibration

Krypton spectrum:

- Well known spectrum
- Was already done in previous runs
- \blacktriangleright ⁸³Rb decays to ^{83m}Kr
 - Rb has a rather long half-life (86 days)
 - Normally implanted into polyimide foil

Two energy levels

- ▶ 32.2 keV transition internal conversion (releases a shell electron)
- ▶ 9.4 keV transition is internal conversion (95 %)

Krypton decay scheme:

Philip Hauer

KRYPTON – GAIN CALIBRATION

Raw Krypton spectrum:

- Main peak used for:
 - Coarse gain equalisation
 - Pad-by-pad gain map

► Similar results to X-ray measurements

KRYPTON – GAIN CALIBRATION

- Apply pad-by-pad gain map to data
- Example: Krypton spectrum
- Correct for electron attachment
- Energy resolution improves significantly
 - \blacktriangleright Raw spectrum: $\sigma_{\rm E}/E = 11.2\,\%$
 - Corrected spectrum: $\sigma_{
 m E}/E=$ 5.0 %

Raw Krypton spectrum:

Corrected Krypton spectrum:

FIRST COLLISIONS – PILOT BEAM WITH PROTONS

- ▶ October 2021: LHC pilot beams
 - pp collisions
 - ▶ $\sqrt{s} = 900 \, \text{GeV}$
- ► ALICE TPC with magnetic field (0.2 T)
 - ▶ dE/dx vs. p plot
 - "Live event display"

From online quality control:

SUMMARY AND OUTLOOK

- The ALICE TPC is fully operational with continuous readout
- Pulser and laser are working as expected
- > X-ray and Krypton data taking were successful
 - Coarse gain equalisation
 - Pad-by-pad gain calibration
- Measurements during pilot beams
 First dE/dx plot
- Commissioning and calibration ongoing
- ► Start of pp physics running in June 2022
- Lead beams expected for November 2022

Philip Hauer

Thanks for your attention!

Backup

ION TAIL

▶ Some areas have a significantly higher gain

- Occurs mainly in the edges
- An "ion-tail" can be observed in these regions

Possible reason: Sagging of GEM foils

- One or more foils bend towards neighbouring electrode
- Strong electric fields in between them
- ► Gas amplification occurs

ION TAIL

▶ Long tail: Probably due to backdrifting ions

- Created between GEM4 and pads
- ► To be investigated

WHY NE-CO2-N2?

Gas	Eff. ionization	Number of electrons per MIP		Drift velocity	Diffusion coeff.		
	energy W _i	$N_{\rm p}~({\rm primary})$	$N_{\rm t}$ (total)	$v_{\rm d}$	D_{L}	D_{T}	$\omega \tau$
	(eV)	$(e cm^{-1})$	$(e cm^{-1})$	$(\text{cm}\mu\text{s}^{-1})$	$(\mu m/\sqrt{cm})$	$(\mu m/\sqrt{cm})$	
Ne-CO ₂ -N ₂ (90-10-5)	37.3	14.0	36.1	2.58	221	209	0.32
Ne-CO ₂ (90-10)	38.1	13.3	36.8	2.73	231	208	0.34
Ar-CO2 (90-10)	28.8	26.4	74.8	3.31	262	221	0.43
Ne-CF ₄ (80-20)	37.3	20.5	54.1	8.41	131	111	1.84

[ALICE TPC Collaboration – JINST 16 – 2021]

- \blacktriangleright High ion mobility \Rightarrow lons quickly get removed from system
- ► No ageing effects expected
- ► N₂: Less primary discharges

Commissioning – Pedestals and Noise

- ▶ Pedestals: Offset of the baseline
- ▶ Noise: RMS of baseline fluctuations
- Pedestals almost perfectly homogeneous
- Online pedestal subtraction

- Cascaded power supply
- High rate current monitor
- ► Trip: Current exceeds
 - ► 6µA in GEM1 GEM3
 - ▶ 10 µA in GEM4

Commissioning – Trip Statistics

[Robert Münzer - Personal Communication]

Average trips per hour:

▶ No load (≈ 2000 h)
 ▶ 0.08/h

Magnet:

- Increased trip rate during magnet ramping
- Adapted HV settings
- Under investigation
- ► 5/3024 (< 0.2%) shorted segments

GATING GRID VS. GEMS

[Alme et al. - NIMA 622 - 2010]

- Ions are captured by gating grid
- Electrons can not pass
- ► Has to be opened and closed
- Max. interaction rate $\approx 3 \, \text{kHz}$

INSTALLATION STATUS – VTRX FAILURES

[ALICE TPC Collaboration – JINST 16 – 2021]

- ► Front-end card (FEC)
- In total: 3276 FECs for whole TPC
- ▶ 1 VTRx per FEC

[Christian Lippmann - Personal Comm.]

► FECs in an IROC

INSTALLATION STATUS – VTRX FAILURES

- Communication problems with FECs
- Problematic component: VTRx optoelectric transceiver
- Received signal strength indicator (RSSI) decreases with time
 - ▶ First seen by CMS HCAL (operational since 2018)
 - Confirmed by ALICE ITS (operational since 2020)
- ▶ Affects approximately 50 % of all modules
- Becomes problematic (link failures) in up to 20 % of installed modules

INSTALLATION STATUS – VTRX FAILURES

- ▶ Reason: Epoxy not cured well during production
- If it gets warm \Rightarrow Outgassing
- Fibre connection becomes less transparent
- RSSI decreases
- ▶ How to overcome this issue?
 - ▶ Post-curing not feasible (typical: 120 °C for 2 h)
 - Regularly cleaning impossible
- Add cooling fins to system
 - Installation possible without unmounting FECs
 - All FECs equipped with fins
 - Stable operation afterwards

[Christian Lippmann - Personal Comm.]

Krypton – Pad-by-Pad Gain Map

- Known structures
 - Sagging
 - Wrinkles
 - Hole size distribution

- Compare to pad-by-pad gain map from X-ray
 - Correlation looks very good
 - Outliers can be explained

Philip Hauer

