
Scintillating sampling ECAL technology for the Upgrade II of LHCb

Marco Pizzichemi*

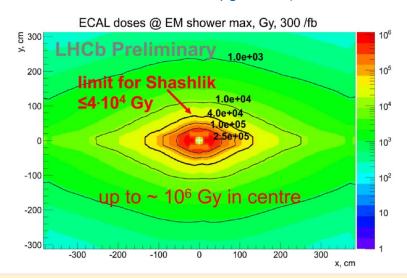
on behalf of the LHCb ECAL Upgrade R&D Group

*University & INFN Milano-Bicocca, and CERN

Current LHCb ECAL configuration

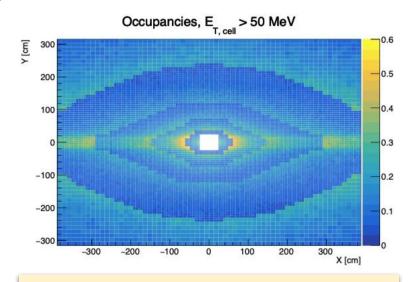
Large **Shashlik** array (about 50 m²), with 3312 modules and 6016 channels:

```
ightharpoonup 176 modules 4 x 4 cm<sup>2</sup> cell size


ightharpoonup 6 x 6 cm<sup>2</sup> cell size

ightharpoonup 2688 modules 12 x 12 cm<sup>2</sup> cell size
```

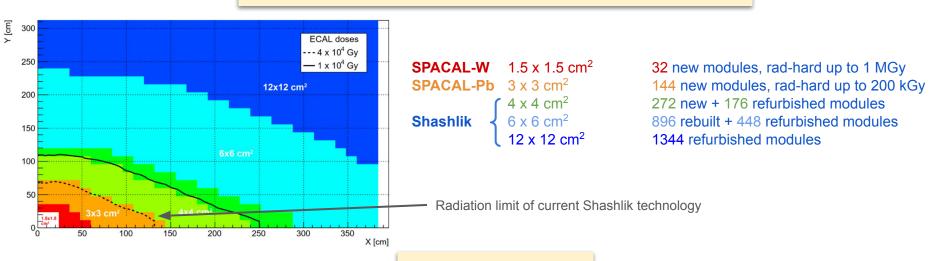
- Optimized for π⁰, e⁻ and γ identification in the few GeV to 100 GeV region at 2 x 10³² cm⁻² s⁻¹
- Radiation hard up to 40 kGy
- Energy resolution: σ(E)/E ≈ 10%/√E ⊕ 1%


Requirements for ECAL Upgrade II

Upgrade II (to be installed at LS4): operation at 1-2 x 10³⁴ cm⁻² s⁻¹

Radiation doses up to 1 MGy and 1 MeV neq/cm² in the center for 300 fb⁻¹:

New technologies required for the center


Increased occupancy and pile-up, requiring:

- Timing O(10ps)
- Increased granularity
- Longitudinal segmentation

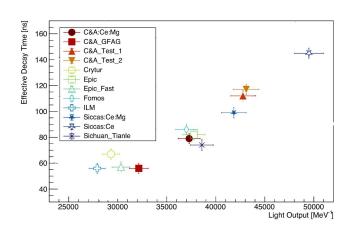
Keep the current energy resolution of $\sigma(E)/E \approx 10\%/\sqrt{E} \oplus 1\%$

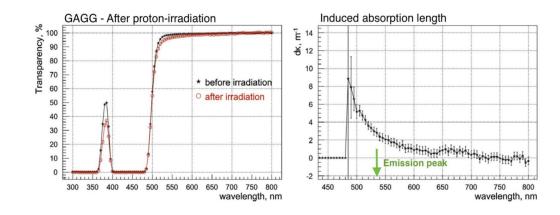
R&D strategy for the ECAL upgrade II

New configuration of modules optimized for radiation dose level

Goals and challenges

- Introduce new Spaghetti Calorimeter (SPACAL) technology in the LHCb ECAL
- Develop radiation hard scintillating crystals
- Need for radiation tolerant organic scintillators
- Add timing to Shashlik modules with new WLS fibres
- Add longitudinal segmentation
- R&D on possible timing layer, based on MCP-PMTs (LAPPD) -> See talk from S. Perazzini (https://indi.to/Y97mz)

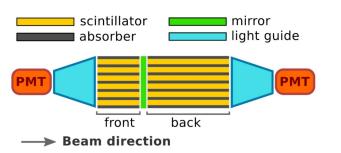

R&D on **GAGG** crystals


Gadolinium Gallium Aluminium Garnet (GAGG) has high light yield and relatively fast scintillation

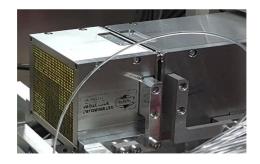
Garnet crystals are **radiation hard**. GAGG irradiated with protons of 24 GeV/c:

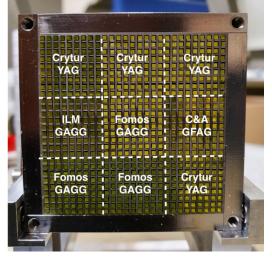
- Fluence of 3.1x10¹⁵ cm⁻²
- > 910 kGy dose
- ➤ Induced absorption below 4 m⁻¹ at the emission peak

See: V. Alenkov et al., NIM A 916 (2019) 226-229


Scintillation properties of GAGG can be tuned with different levels of dopants (Ce,Mg) and growth conditions:

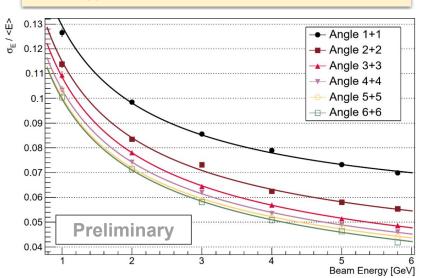
- Sample tested over a factor 2 in light output and 3 in decay time
- High light yield -> slow decay time
- Scintillation is sped up at the expense on light output with Mg codoping
- Further R&D ongoing to reduce decay time below 20 ns


See: L. Martinazzoli et al., NIM A 1000 (2021) 165231


L. Martinazzoli et al., submitted to Light: Science & Applications

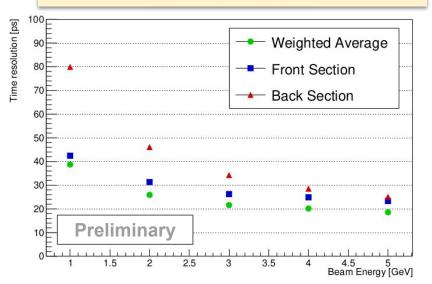
SPACAL-W prototype with garnet crystal fibres

- Pure tungsten absorber with 19 g/cm³
- Crystal garnet scintillators
- 9 cells, each 1.5 x 1.5 cm² ($R_M \approx 1.45$ cm)
- 4 + 10 cm long split $(7+18 X_0)^{\circ}$
- Reflective mirror between sections



- Crystal garnets from several producers tested:
 - Crytur YAG
 - Fomos GAGG
 - ILM GAGG
 - ➤ C&A GAGG
- Different photo-detectors tested:
 - > Hamamatsu R12421 for energy resolution (coupled with light guides)
 - Hamamatsu R7600U-20 metal channel dynode (MCD) PMT for timing (direct coupling)
- Further tests performed (not discussed in this presentation):
 - Optical coupling with 3M foil instead of air
 - > 12 m long (instead of 3 m) analog cables between sensors and front-end electronics

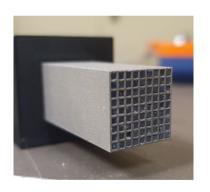
SPACAL-W with crystals: test beam results


Energy resolution (DESY 2020, R12421)

- Energy resolution improves at larger incidence angles
- Energy resolution at 3°+3°:

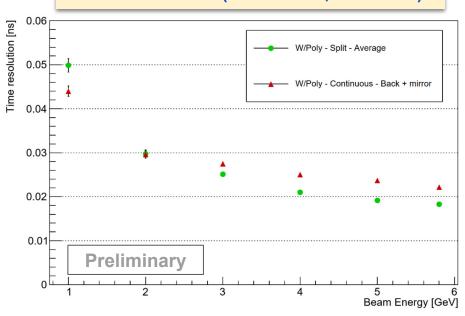
sampling term: 10.6%constant term: 1.9%

Time resolution (DESY 2021, R7600-20)

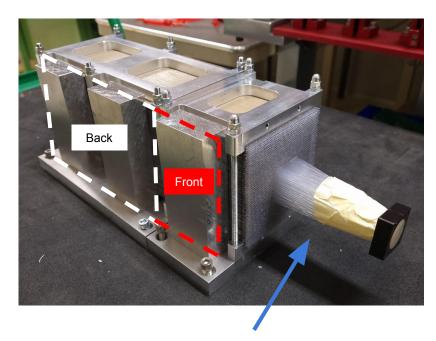


- Timing resolution measured at 3°+3° incidence angle
- Time stamps from front and back sections obtained with constant fraction discrimination (CFD)
- Time resolution (C&A GAGG): 18 ps @ 5 GeV

Analysis of SPS 2021 data (higher energy) ongoing

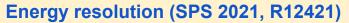

SPACAL-W with organic scintillating fibres

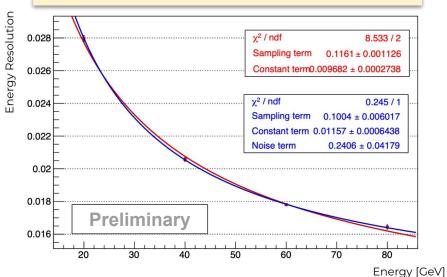
- Candidate for consolidation of inner region during LS3
- 3D printed pure tungsten absorber
- Polystyrene squared scintillating fibres
- 1 cell produced, 1.5 x 1.5 cm² (with $R_M \approx 1.8$ cm)
- Two configurations tested:
 - > 5+14 cm long split cell (7+18 X_0), double readout
 - > 19 cm long continuous cell, single readout at back
- Reflective mirror between sections, or continuous fibres with mirror at front



Time resolution (DESY 2021, R7600-20)

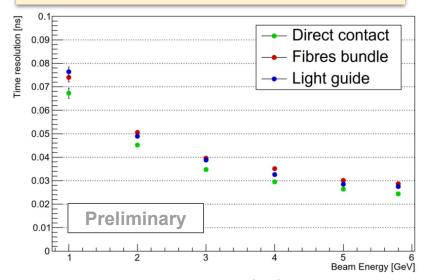
- Time resolution measured at 3°+3° incidence angle
- Split cell: **19 ps** @ 5 GeV
- Continuous cell: 24 ps @ 5 GeV

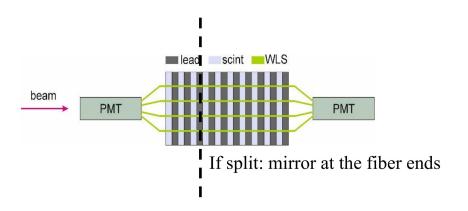

SPACAL-Pb with organic scintillator fibres



Fibres bundle, 1 cell

- Lead absorber with polystyrene fibres
- 9 cells, each $3 \times 3 \text{ cm}^2 (R_M \approx 3 \text{ cm})$
- $8 + 21 \text{ cm long } (7+18 \text{ X}_0)$
- Reflective mirror between sections.
- Hamamatsu R7899 for energy resolution
- Hamamatsu R7600U-20 metal channel dynode (MCD) PMT for timing
- Different readout configurations:
 - Direct contact
 - > 10 cm long PMMA light guide
 - Bundle of fibres coupled directly to MCD PMT


SPACAL-Pb: test beam results

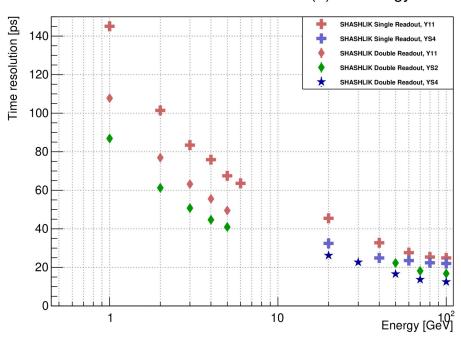

- Measured at high energy at SPS CERN
- At 3°+3° incidence angle
- Best fit to data adding noise term
- Sampling term: 10.0%
- Constant term: 1.16%

Time resolution (DESY 2021, R7600-20)

- Timing resolution measured at 3°+3° incidence angle
- Time stamps from front/back sections with CFD
- Only part of cell readout in direct contact due to smaller active area of the PMT (1.8 x 1.8 cm²)
- Analysis of higher energy SPS 2021 data ongoing
- Time resolution: 26 ps @5 GeV

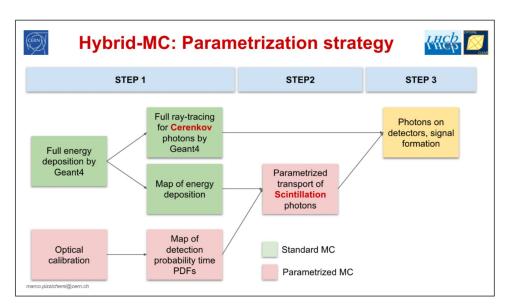
Shashlik: towards Upgrade II

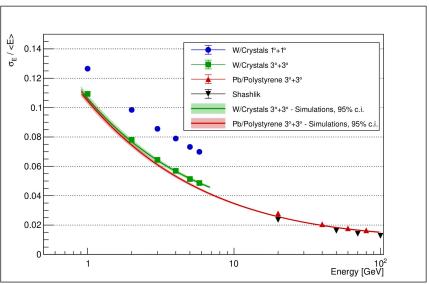
- 4 mm thick scintillating tiles and 2 mm thick lead tiles with wavelength shifting (WLS) fibres
- Radiation hardness limit at 40-50 kGy -> suitable for non-central part of ECAL
- R&D to improve intrinsic time resolution


- Main focus on double-sided readout to mitigate the effect of longitudinal shower fluctuations
 - With continuous WLS fibers
 - \triangleright With split fibres at shower maximum (≈ 7X₀)
- PMTs allowing better timing performance (R7600U-20)
- WLS (from KURARAY*) with shorter decay time
 - Y11 (current LHCb) = 7 ns decay time
 YS2 = 3 ns decay time
 YS4 = 1.1 ns decay time

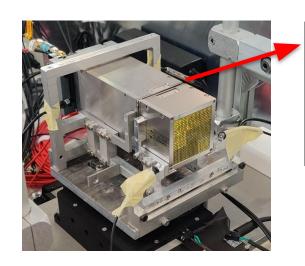
^{*}Many thanks to KURARAY for providing pre-production YS2 and YS4 samples

Shashlik: test beam results


Time resolution (DESY & SPS 2021)


SHASHLIK Time Resolution (σ) vs Energy

- Time resolution improved with faster WLS fibres
- Double-sided readout shows improved timing performance over single side readout
- Similar time resolution with continuous and split WLS fibers and double-sided readout
- Time resolution better than 40 ps > 5 GeV


Detailed Monte Carlo simulations

- Geant4 simulation of energy deposit and parametrized transport of scintillation photons
- Allows a gain in computation time by a factor x100
- Particle flux from full LHCb simulation can be included
- Different module types (SPACAL-W, SPACAL-Pb, Shashlik)
- Parametrised response of photo-detectors
- Good agreement with test beam data over the 1-100 GeV range

Energy resolution and longitudinal separation

WGAGG

 0.065 mm
 ESR

 0.3 mm
 Alu

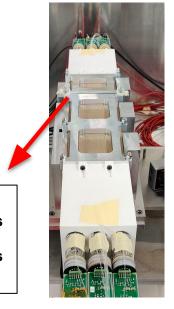
 1.5 mm
 Stainless

 2.37 mm
 Air

 1.05 mm
 Stainless

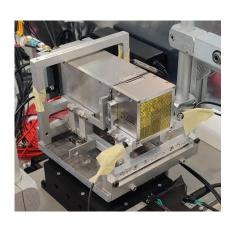
 0.3 mm
 Alu

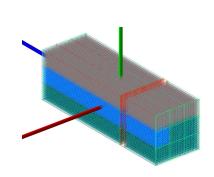
 0.065 mm
 ESR

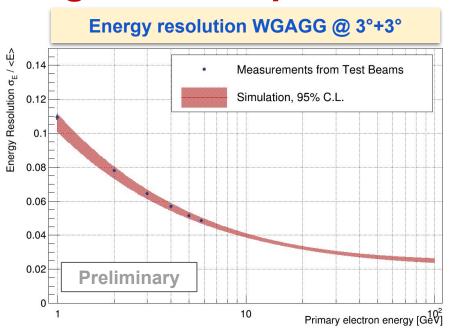

PbPoly

 0.065 mm
 ESR

 2.0 mm
 Stainless


 1.0 mm
 Air


2.0 mm Stainless 0.065 mm ESR



- In SPACAL prototypes produced for Test Beam the longitudinal separation (front/back sections) is not optimized
- This is due to the need for flexibility to perform several tests
- Material budget between SPACAL sections is not negligible -> energy resolution is degraded

Energy resolution and longitudinal separation

- The MC framework reproduces well the Test Beam measurements, when the material between front and back sections is properly taken into account
- In SPACAL modules designed for usage in the LHCb ECAL the front/back separation will be optimized (e.g. thin reflector foil)
- The MC framework allows to predict the energy resolution expected in these optimized modules

SPACAL front-back separation

		Measurements on TB modules [%]	MC simulations on TB modules [%]	MC simulations on optimized modules [%]
SPACAL-W	Sampling term	10.6 ± 0.1	10.4 ± 0.1	9.1 ± 0.1
	Constant term	1.9 ± 0.5	2.27 ± 0.04	1.38 ± 0.03
SPACAL-Pb	Sampling term	10.0 ± 0.6	10.4 ± 0.1	10.4 ± 0.1
	Constant term	1.16 ± 0.06	1.09 ± 0.04	0.62 ± 0.06

Energy resolution expected in optimized modules in line with requirements

Summary and Outlook

- SPACAL and Shashlik technologies provide an attractive option for the Upgrade II of LHCb ECAL
- Several prototypes produced and tested at DESY and SPS-CERN
- Time resolution above 5 GeV

```
    ➤ SPACAL W+GAGG < 20 ps</li>
    ➤ SPACAL W+Polystyrene < 20 ps</li>
    ➤ SPACAL Pb+Polystyrene < 25 ps</li>
    ➤ SHASHLIK < 40 ps</li>
```

- Energy resolution in line with requirements when final, optimized configuration is considered
- Comprehensive R&D studies ongoing:
 - > Production and Test Beam measurements of new prototypes
 - Detailed Monte Carlo simulations
 - > Investigation on new radiation-hard and fast scintillators
 - Study of more realistic PMTs and electronics readout
 - Study of new absorber production techniques