Silicon pixel-detector R&D for future lepton colliders

VCI2022 – The 16th Vienna Conference on Instrumentation
February 24th, 2022

Dominik Dannheim (CERN)
on behalf of the CLICdp collaboration
Outline

- Future Lepton Colliders and pixel-detector requirements

- Pixel-detector R&D examples:
 - Hybrid-detectors
 - CLICpix2 thin-sensor assemblies
 - ACF hybridisation
 - Monolithic sensors
 - CLICTD tracker-technology demonstrator
 - FASTPIX timing demonstrator

- Conclusions
Future Lepton Colliders

- Several proposals for post-LHC future Lepton Colliders:
 - $\sqrt{s} \sim 350 \text{ GeV} - 3 \text{ TeV}$
 - Circular / linear collider designs
 - Physics goals:
 - Precision Higgs / top measurements
 - Measurement of electroweak precision observables
 - Direct/indirect Beyond-the-Standard-Model searches
- Vertex/tracking detector performance needs to match precision-physics goals:
 - Displaced vertices: $\sigma(d_0) \sim 5 \oplus 15/(p[\text{GeV}] \sin^{3/2} \theta) \mu\text{m}$
 - Track-momentum: $\sigma(p_T)/p_T^2 \lesssim 2 \times 10^{-5} \text{ GeV}^{-1}$

ILC

CEPC

FCC-ee

CLIC
Lepton Collider vertex/tracker requirements

Vertex detector:
• good single point resolution: $\sigma_{SP} \sim 3 \, \mu m$
• low material budget: $\lesssim 0.2\% \, X_0 / \text{layer}$
 \rightarrow low-power ASICs for air cooling ($\sim 50 \, \text{mW/cm}^2$)

Large-area Tracker:
• 7 μm single-point resolution ($\sim 25\text{-}50 \, \mu m$ R_ϕ pitch)
 \rightarrow many layers, large outer radius
• $\sim 1\text{-}2\% \, X_0$ per layer
 \rightarrow low-mass supports + services, low power $\sim 150 \, \text{mW/cm}^2$

Both:
• Moderate radiation exposure ($>\sim 10^4$ below LHC!):
 • NIEL: $< 10^{11} \, \text{n}_{eq}/\text{cm}^2/\text{y}$
 • TID: $< 1 \, \text{kGy} / \text{year}$
• few % max. occupancy from beam backgrounds
 \rightarrow sets inner radius and limits cell sizes
• time stamping down to $\sim 5 \, \text{ns}$ accuracy (CLIC 3 TeV)
 \rightarrow depleted sensors, fast frontend
• Benefits of precision timing ($<100 \, \text{ps}$) for PID under study

Linear-Collider specific:
• Low duty cycle: $\sim 20\text{-}200 \, \text{ms}$ gaps between bunch trains
 \rightarrow trigger-less readout, pulsed powering

\rightarrow Emphasis of this talk on technology R&D for 3-TeV CLIC
(most challenging combination of requirements)
CLIC pixel-detector R&D

Hybrid Assemblies

CLICpix2 + planar sensor

| 65 nm CMOS |
| 200 nm SOI |

Timepix3 ACF-bonding

| 130 nm CMOS |
| 65 nm CMOS + 180 nm HV-CMOS |

CLICpix2 + C3PD

| 65 nm CMOS |
| 180 nm CMOS |

Monolithic Sensors

| 180 nm HV-CMOS |
| 180 nm CMOS |

ATLASpix

| 200 nm SOI |
| 180 nm CMOS |

CLICTD

| 180 nm CMOS |
| 65 nm CMOS |

Tools

CLICdp beam telescope

Caribou readout system

MC Simulation framework: Allpix Squared

Analysis & reconstruction framework: Corryvreckan

| Detector technologies for CLIC, CERN-YR-2019-001 |
Caribou readout system	ap² https://gitlab.cern.ch/allpix-squared/allpix-squared
Carbyne	NIM A 901 (2018) 164-172
tools	2021 JINST 16 P03008
https://gitlab.cern.ch/corryvreckan/corryvreckan	

- Diverse R&D program, focusing on conceptual studies + small technology demonstrators
- Flexible tools developed, to support the R&D and exploit synergies between the various R&D lines
- R&D performed within various collaborative frameworks (CLICdp collaboration, CERN EP R&D, AIDAinnova) and with strong links to HL-LHC developments
Fine-pitch hybrid planar pixel detectors

CLICpix2 readout ASIC:
- Targets CLIC vertex-detector requirements
- 65 nm CMOS process
- Pixel pitch 25 µm x 25 µm (128 x 128 pixels)
- Simultaneous 5-bit ToT + 8-bit ToA (10 ns bins) readout
- Used for development of 25 µm-pitch interconnect-process (IZM) and for testing innovative fine-pitch sensor designs (planar active edge, active HV-CMOS, enhanced-lateral-drift sensors)

SnAg bumps on CLICpix2 (IZM)

Cross section of bump bonds by IZM

- Single-die bump-bonding process with pixel pitch of 25 µm developed by IZM
- Interconnect yield of up to 99.6%

JINST, 15(03), C03045
CLICpix2 test-beam results

- Detailed test-beam studies for assemblies with high interconnect yield
- Excellent performance observed for 130 μm sensor thickness, meeting most CLIC requirements:
 - <3 μm intrinsic spatial resolution (mean cluster size ~2.6)
 - Hit-detection efficiency >99.7%
 - Hit-time resolution <5 ns
- However: sensor thickness well above target thickness of 50 μm
 \[\rightarrow \sim 6.8 \text{ μm} \] spatial resolution for 50 μm sensor thickness (mean cluster size ~1.3)

Efficiency

Spatial residuals

Timing residuals

CERN-THESIS-2020-338
Anisotropic Conductive Film (ACF)

• Adhesive epoxy film with conductive micro particles
 • Compression of particles enables electrical connection between pads

• New prospects for hybridisation and module integration

• Ongoing development / optimisation of two in-house processes:
 • Chemical Electroless Nickel Immersion Gold (ENIG) deposition for Under Bump Metallization (UBM) → uniformity, thickness
 • Semi-automatic flip-chip bonding with ACF layer → ACF material (particle diameter and density), epoxy thickness, lamination procedure, temperature/pressure profile for bonding

CERN-EP-RDET-2021-001

ACF-hybridisation Conductive ACF micro particles ENIG metallisation

https://agenda.linearcollider.org/event/9211/contributions/49469/attachments/37464/58685/ILCX_MVicente_ACF.pdf

Timepix3 ENIG re-processing

Timepix3 pixel matrix with ACF
ACF - Hybridisation Tests

- Bonding tests performed with Timepix3 and CLICpix2 ASICs

- 18 μm film with 3 μm micro particles, 100 kg bonding force

- **Proof-of-concept** for bonding areas up to 1 cm² and 55 μm pitch

- Interconnection for larger areas / smaller pitch more challenging due to the required larger bonding force

Bonding to Timepix3 sensor

Approx. 50% ACF coverage
ACF for module integration

ACF module integration
Larger bonding pads: 80 µm – few mm diam.
→ Similar to industrial ACF usage
→ Good interconnect results
→ Topology / uniformity of UBM important

Various proof-of-concept projects:
• Beam tests of ALPIDE ACF modules
• Bonding tests with MALTA silicon bridges
• Tests with FCAL LUXE pad sensors

M. Mager, F. Dachs, Y. Benhammou
Small collection electrode monolithic CMOS

- Modified 180 nm CMOS imaging process with small collection electrode (O(fF) capacitance)
 (e.g. ALPIDE, (Mini-)MALTA, CLICTD, FASTPIX …)

- Deep low-dose n-implant for full lateral depletion

- Introduction of lateral doping gradient leads to accelerated charge collection
 - Comparison of various design modification in terms of detector performance

![Diagram of silicon pixel-detector design modifications](Image)

JINST 14 (2019) C05013

February 24, 2022
Silicon pixel-detector R&D for future Lepton Colliders
Simulations

- Complex non-uniform field configurations in the small collection-electrode layout require sensor-design optimisations

- Finite-element (3D TCAD) and Monte Carlo (Allpix Squared) simulation to combine accurate sensor modelling with high simulation rates

- Validated against transient 3D TCAD and data

Electrostatic potential + streamlines

NIM A 1016 (2020) 0163784

NIM A 901 (2018) 164172

CLICdp-Pub-2021-003
https://arxiv.org/abs/2202.03221
CLICTD Technology Demonstrator

CLICTD 180nm monolithic sensor
• Channel pitch: 300 µm x 30 µm (16x128 channels)
• Sub-pixel pitch: 37.5 µm x 30.0 µm
• Analogue front-end of 8 sub-pixels grouped in one digital front-end (= readout channel)
• 8-bit ToA (10 ns ToA bins) + 5-bit ToT (combined ToA/ToT for every 8 sub-pixels in 300µm dimension)
• Sensors produced with different substrate materials (epitaxial, high-resistivity Cz) and thicknesses (40-300 µm)

Excellent performance observed in test-beam measurements:
• Threshold: ~100 - 180 e (occupancy < 10^{-3} hits/sec)
• Single pixel noise : < 15 e
• Hit-detection efficiency : > 99.7 %
• Spatial resolution : 4.6 µm
• Time resolution : 5.2 ns
(Limited by front-end time resolution)

• Reduced charge sharing for pixel flavour with segmented n-implant leads to higher concentration of charge in one pixel cell → Improved efficiency at high thresholds
Advanced sensor materials

- Production using high-resistivity Czochralski (few kΩcm) wafers allowing for larger depleted volume → Larger active sensor volume

- Improved efficiency at high thresholds due to higher signal
- High-resistivity Czochralski sample enables combination of small collection electrode with large depleted volume → Improvement for all performance parameters (though limited by front-end)

NIM A 986 (2021) 164381

- Improved efficiency at high thresholds due to higher signal
- High-resistivity Czochralski sample enables combination of small collection electrode with large depleted volume → Improvement for all performance parameters (though limited by front-end)
FASTPIX technology demonstrator for sub-ns timing

- Modified 180 nm CMOS imaging process
- 32 mini matrices of hexagonal pixels (8.66 to 20 μm pitch)
- 4 analogue outputs + 4x16 pixels with ToT/ToA
- Various sensor designs and process options
- Position and ToT encoding via delay lines (asynchr. r/o)

W. Snoeys, T. Kugathasan

On-chip readout circuit

Simulated chip parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor capacitance</td>
<td>1 fF</td>
</tr>
<tr>
<td>Equivalent Noise Charge</td>
<td>11 e-3</td>
</tr>
<tr>
<td>Jitter (for Q_m = 1000 e-)</td>
<td>20 ps</td>
</tr>
<tr>
<td>In pixel source follower</td>
<td>18 μW</td>
</tr>
<tr>
<td>Periphery discriminator</td>
<td>150 μW</td>
</tr>
<tr>
<td>Analog monitoring buffer</td>
<td>20 mW</td>
</tr>
</tbody>
</table>

- Optimised for precise sensor timing in 3D TCAD simulation studies
- Hexagonal pixel layout:
 - Improved charge collection at pixel edges
 - Reduced number of neighbouring pixels
 - Less charge sharing
ATTRACTION FASTPIX: Test-beam measurements (I)

→ Fully efficient operation (for ~43 e threshold, ~5 e noise)

Intrinsic position resolution ~4 μm (for 20 μm pitch), significantly below binary resolution of 5.8 μm

Charge sharing mostly at the pixel edges
→ increased cluster size
→ Reduced seed charge
Test-beam timing results:

- Strong time-walk effects in particular at matrix edge due to charge sharing
- Time resolution of ~500 ps w/o time-walk correction
- Time resolution of ~120 ps after offline time-walk correction

Conclusions

• **Stringent requirements** for Lepton Collider vertex and tracking detectors have inspired broad and integrated technology R&D program

• Innovative sensor + readout technologies under study
 • Combination of **vertex-detector** requirements remains challenging (**CLICpix2**)
 • **Tracker** requirements met by monolithic technologies (**CLICTD**)
 • **Sub-nanosecond sensor timing** demonstrated in monolithic technology (**FASTPIX**)

• Innovative **interconnect technology** under development for hybridisation and module building (**ACF**)

• Advanced tools for characterization (**Caribou**), simulation (**Allpix2**) and analysis (**Corryvreckan**) support the detector R&D

Thanks to everyone who provided material for this talk!

This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under GA no 101004761.

Part of the measurements leading to parts of these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).
Additional Material
Caribou DAQ

Versatile data acquisition system based on programmable hardware

System-on-Chip (SoC) board

- Embedded CPU for DAQ, user interface, operating system (Linux)
- Field programmable gate array (FPGA) for detector control and data processing

Control and Readout (CaR) interface board

- Physical interface from SoC board to detector chip
- Voltage regulators, ADCs, pulse/clock generator

Application-specific detector carrier board

- Only detector chip and passiv components
- Successfully used for ATLASPix, ATLASPix2, ATLASPix3, CLICpix2/C3PD, H35Demo/FEI4, RD50-MPW1

https://iopscience.iop.org/article/10.1088/1748-0221/12/01/P01008

https://gitlab.cern.ch/Caribou
Allpix-Squared simulation toolkit

Selected Applications

- **Detectors for HEP**
 - MAPS (CLICTD, ALICE, ARCADIA,...), RD53, ATLAS ITk Strips, ...
- **NASA / Space Radiation Analysis**
- **ISS radiation monitor simulations**
- **Germanium X-ray detector (Synchrotron SOLEIL)**
- **Education / Outreach activities**
 - EDIT Detector School, Beamline for Schools 2019,...

Publications

- NIM A 901 (2018) 164-172
- NIM A 964 (2020) 163784

Website
https://cern.ch/allpix-squared

Repository
https://gitlab.cern.ch/allpix-squared/allpix-squared

User Forum
https://cern.ch/allpix-squared-forum/

User Manual

Mailing list
https://e-groups.cern.ch/e-groups/Egroup.do?egroupld=10262858
Corryvreckan test-beam analysis framework

Reconstruction and analysis software for test-beam data

- Highly flexible/configurable by using separate modules for each reconstruction/analysis step

- Wide user base e.g. CLICdp, ALICE ITS3, ATLAS ITk, LHCb Ib/Ii, Mu3e, etc.

Corryvreckan

2021 JINST 16 P03008

- Visit the website for the manual, tutorials and more
 https://cern.ch/corryvreckan

- Check out the repository
 https://gitlab.cern.ch/corryvreckan/corryvreckan

- Join the discussion in the forum
 https://corryvreckan-forum.web.cern.ch/

- Contact us
corryvreckan.info@cern.ch
CLIC (Compact Linear Collider): linear e^+e^- collider concept for post HL-LHC phase

- \sqrt{s} from few hundred GeV up to 3 TeV (two-beam acceleration with ~ 100 MV/m)
- Precision and discovery physics at the TeV scale
- Detector and physics studies within the CLICdp collaboration of 30 institutes

CLIC detector model

- **Solenoidal Magnet**: Superconducting magnet at 4 Tesla
- **Tracking Detector**: Silicon pixel detector, outer radius 1.5 metres
- **Vertex Detector**: Ultra-low mass silicon pixel detector, inner radius 31 millimetres
- **Return Yoke**: Iron return yoke with detectors for muon ID
- **Fine-grained Calorimeters**: Electromagnetic and hadronic calorimeters used for particle flow analysis
- **Forward Region**: Electromagnetic calorimeters for luminosity measurement and extended angular coverage

Staged CLIC implementation

CLICdp collaboration institutes

Tracking detector
- Material: 1-2% X_0 / layer
- Single-point resolution: 7 micrometres

Vertex detector
- 25 micrometre pixels
- Material: 0.2% X_0 / layer
- Single-point resolution: 3 micrometres
- Forced air-flow cooling

Electromagnetic calorimeter
- 40 layers (silicon sensors, tungsten plates)
- Material: 22 X_0, $+1\lambda$

Hadronic calorimeter
- 60 layers (plastic scintillators, steel plates)
- Material: 7.5 λ

Learn more about the CLIC detector at clic.cern

February 24, 2022

Silicon pixel-detector R&D for future Lepton Colliders
Experimental conditions at CLIC

- CLIC operates with bunch trains, 50 Hz repetition rate
 - Low duty cycle
 - Trigger-less readout between trains
 - Allows for power-pulsed operation of detector, to reduce average power consumption

- Collisions within 156 ns bunch trains
- High E-fields lead to Beamstrahlung
 - High rates of beam-induced background particles
 - Drives detector design (layout, granularity, timing)

Main backgrounds in detector

- **Incoherent e+e- pairs**
 - 19k particles / bunch train at 3 TeV
 - Constrains beam pipe radius, granularity

- **γ γ →hadrons events**
 - 17k particles / bunch train at 3 TeV
 - Constrains granularity, layout, impacts physics

High instantaneous hit rates (up to 6 GHz/cm²), however: very low readout rate (50 Hz)
• Study impact of technology parameters (pixel size, material budget) on detector performance
• Optimization of detector geometry (# layers, placement) for given technology assumptions
• Using fast simulations (LiC detector toy) and Geant-4 based full detector simulations including beam-induced backgrounds
• Main benchmark parameters: impact-parameter and momentum resolution, flavor-tagging performance, reconstruction efficiency
Sensor and readout R&D

Hybrid planar sensors

ELAD planar sensors

CCPD sensors

Hybrid detectors:
- Factorise r/o and sensor R&D
- Smallest feature-size ASICs
- Advanced sensor concepts
- Small pixels, highest performance → for inner layers

SOI CMOS sensors

Monolithic CMOS sensors:
- Lowest material budget
- Medium feature-size
- Simplified construction → for large-area tracker
- Recent developments target also inner layers

Large fill-factor CMOS sensors

Small fill-factor CMOS sensors
CLICpix2 r/o ASIC

• CLICpix2 in same 65 nm process as CLICpix:
 • Increased matrix size to 128 × 128 pixels
 • Longer counters for charge (5-bit) and timing (8-bit) measurements
 • Improved noise isolation and removal of cross-talk issue observed in first CLICpix
 • More sophisticated I/O with parallel column readout and 8/10 bit encoding
 • Integrated test pulse DACs and band gap

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power dissipation</td>
<td>≤ 12 µW</td>
</tr>
<tr>
<td>Area</td>
<td>≤ 12.5x25 µm²</td>
</tr>
<tr>
<td>Input charge, Q_{in}</td>
<td>nominal 4 ke-, max. 40 ke-</td>
</tr>
<tr>
<td>Minimum threshold, $Q_{th,min}$</td>
<td>≤ 600 e-</td>
</tr>
<tr>
<td>Equivalent input-referred noise, $Q_{n,in}$</td>
<td>≤ 70 e-</td>
</tr>
<tr>
<td>ToT dynamic range</td>
<td>≥ 40 ke-</td>
</tr>
<tr>
<td>ToA accuracy</td>
<td>≤ 10 ns</td>
</tr>
<tr>
<td>Total ionizing dose (for 10 yr)</td>
<td>1 Mrad</td>
</tr>
<tr>
<td>Input charge types</td>
<td>e-, h+</td>
</tr>
<tr>
<td>Testability</td>
<td>in-pixel test pulse (i.e. Q_{test}) injection</td>
</tr>
</tbody>
</table>
CLICpix2 50-um test-beam results

Size distribution of associated clusters

Residual in X

Residual in Y

Sensor bias voltage -60V, device without guard ring
CLICTD monolithic HR-CMOS tracker chip

Good performance of studied 180 nm HR-CMOS technology with respect to requirements of CLIC tracker

Technology used for ongoing design of a fully integrated chip for the CLIC tracker

CLIC Tracker Detector (CLICTD) – monolithic HR-CMOS sensor with 30 μm x 300 μm pixels

Segmented macro-pixel structures to maintain advantages of small collection diode (prompt and fully efficient charge collection) while reducing digital logic:

Discriminator output of 8 collection diodes combined in logical OR

Output of logical OR passed to digital circuitry:

- Simultaneous 8-bit ToA and 5-bit ToT measurements
- Expect $\sigma_{SP} \sim 7$ μm in short direction (charge sharing)
- Hit bit pattern → maintain good resolution also in long direction
- 100 MHz clock to achieve 10 ns time binning