Designing a Muon Collider Detector

Sergo Jindariani (Fermilab)
VCI’2022
February 22th, 2022

On behalf of the Muon Collider Physics and Detector Group
Muon Colliders

- Provides a powerful and versatile tool for HEP explorations
 - Colliding elementary particles
 - Less synchrotron radiation than e+e- – can use circular accelerators
 - Luminosity per energy consumed
 - Path to very high energy collisions
- The 2020 Update of the European Strategy for Particle Physics recommended to “investigate the possibility to have bright muon beams”
- International Muon Collider Collaboration (IMCC) established, hosted by CERN
- Resurgence of interest in Muon Colliders within Snowmass
 - Expertise in the US from the Muon Accelerator Program (MAP)
Dramatic improvement in Higgs coupling precision with respect to HL-LHC

New physics reach similar or better than 100 TeV proton-proton machine

arXiv:2103.14043

arXiv:1901.06150
Beam Induced Background

- Beam background identified as one of the main challenges
- Main Source of Beam Induced Background (BIB) are beam muon decays
- Muons decay with an average lifetime of $2.2 \cdot 10^{-6}$ seconds at rest, at $\sqrt{s} = 3$ TeV they live for about $3.1 \cdot 10^{-2}$ seconds
 - beam 1.5 TeV $\lambda = 9.3 \times 10^6$ m, with $2 \times 10^{12} \mu$/bunch $\Rightarrow 2 \times 10^5$ decay per meter of lattice.

<table>
<thead>
<tr>
<th>beam energy [GeV]</th>
<th>62.5</th>
<th>750</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ decay length [m]</td>
<td>3.9×10^5</td>
<td>4.7×10^6</td>
</tr>
<tr>
<td>μ decays/m per beam</td>
<td>5.1×10^6</td>
<td>4.3×10^5</td>
</tr>
<tr>
<td>photons ($E_{\text{ph.}}^{\text{kin}} > 0.2$ MeV)</td>
<td>3.4×10^8</td>
<td>1.6×10^8</td>
</tr>
<tr>
<td>neutrons ($E_{\text{n}}^{\text{kin}} > 0.1$ MeV)</td>
<td>4.6×10^7</td>
<td>4.8×10^7</td>
</tr>
<tr>
<td>electrons ($E_{\text{el.}}^{\text{kin}} > 0.2$ MeV)</td>
<td>2.6×10^6</td>
<td>1.5×10^6</td>
</tr>
<tr>
<td>charged hadrons ($E_{\text{ch. had.}}^{\text{kin}} > 1$ MeV)</td>
<td>2.2×10^4</td>
<td>6.2×10^4</td>
</tr>
<tr>
<td>muons ($E_{\text{mu.}}^{\text{kin}} > 1$ MeV)</td>
<td>2.5×10^3</td>
<td>2.7×10^3</td>
</tr>
</tbody>
</table>
Detector

hadronic calorimeter
- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- 30x30 mm² cell size;
- 7.5 \(\lambda_i \).

electromagnetic calorimeter
- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- 5x5 mm² cell granularity;
- 22 \(X_0 + 1 \lambda_i \).

muon detectors
- 7-barrel, 6-endcap RPC layers interleaved in the magnet’s iron yoke;
- 30x30 mm² cell size.

tracking system
- **Vertex Detector:**
 - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 - 25x25 \(\mu \text{m}^2 \) pixel Si sensors.
- **Inner Tracker:**
 - 3 barrel layers and 7+7 endcap disks;
 - 50 \(\mu \text{m} \times 1 \text{ mm} \) macro-pixel Si sensors.
- **Outer Tracker:**
 - 3 barrel layers and 4+4 endcap disks;
 - 50 \(\mu \text{m} \times 10 \text{ mm} \) micro-strip Si sensors.

shielding nozzles
- Tungsten cones + borated polyethylene cladding.

10º acceptance limitation due to the nozzles + few degrees of extreme occupancy in the vertex detector.
BIB properties

Di Benedetto et al., Journal of Instrumentation 13(2018)

F. Collamati et al. 2021 JINST 16 P11009

Photons
Electrons/positrons
Neutrons

Muon beam 0.75 TeV

di Benedetto et al., Journal of Instrumentation 13(2018)

F. Collamati et al. 2021 JINST 16 P11009
• Low momentum particles
• Partially out-of-time with respect to the bunch crossing
• Often, not pointing to the interaction region
Radiation levels at 3 TeV comparable to HL-LHC

For comparison, FCC-hh requirements are \(~10^{18}/\text{cm}^2/\text{year}\)

Expected (FLUKA simulation) to be approximately:
- \(~10^{14-15}/\text{cm}^2/\text{y}\) in the tracker
- \(~10^{14}/\text{cm}^2/\text{y}\) in the ECAL
Tracker

- Goal: bring occupancy to <1% level. Pixel size optimized to achieve this goal
- Timing is also important, but need to be careful to not impact efficiency for slow particles
- Other requirements are not unique: low mass/power, radiation tolerance, low noise
- Total number of channels ~ 2B (similar in size to Phase-2 ATLAS/CMS).
• Precision timing is critical for reducing the number of BIB hits. Up to a factor of x3 reduction in the inner layers
• Correlation between layers (a la CMS pT module) provides additional large reduction
• Some on-detector filtering may be needed

Example R&D:
• Monolithic devices
• AC-LGADs
• 3D hybrid pixels
• Intelligent sensors
• Common challenges: services, cooling, low-power ASICS
Tracking Performance

• With some basic hit suppression and track level cuts, get good offline track efficiency and resolutions
• Active work on tracking improvements, including Kalman based algorithm
Calorimeters

- ECAL: SiW with 22 X_0, 5x5 mm2 pads
- HCAL: Iron+Scintillator with 7.5λ
- High occupancy in the ECAL
Calorimeters (2)

- Timing and shower profile are the key
- SiW calorimeter provides excellent granularity, good resolution, high density

- Alternatives:
 - Crystals
 - Gas detectors

Example R&D:
- Better granularity
- Better timing
- Particle tracking
- dual-readout (DR) compensation
- develop fast, rad hard materials/solutions
Calorimeter Performance

Take advantage of LHC experience with pile-up suppression techniques

- In progress:
 - Particle-flow reconstruction and particle level pileup removal methods (e.g. Softkiller)
Muon Reconstruction

- Targets 100um spacial and 1ns timing resolutions
- Current design: gaseous detectors interleaved in an iron yoke
- High number of hits in the forward disks due to the BIB
- Good efficiency observed throughout the momentum and rapidity range, further improvements in progress

Future R&D directions: better timing and resolution (GEM, Micromegas, MRPC (gas issues), PicoSec…)

Very high energy muon momentum reconstruction in 10 TeV collisions remain challenging
Readout/DAQ Considerations

- Key parameter - beam crossings every 10 μs.

- Streaming approach: availability of the full event data \rightarrow better trigger decision, easier maintenance, simplified design of the detector front-end...

- However, the BIB might be prohibitive for a full triggerless TDAQ scheme
Trigger/DAQ Considerations

- Data dominated by the Tracker and the ECAL

- Input data rates at 1.5 TeV (with x2 safety factor):

<table>
<thead>
<tr>
<th></th>
<th>Hit</th>
<th>On-detector filtering</th>
<th>Number of Links (20 Gbps)</th>
<th>Event Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracker</td>
<td>32-bit</td>
<td>t-t₀ < 1 ns</td>
<td>~3,000</td>
<td>30 Tb/s</td>
</tr>
<tr>
<td>Calorimeter</td>
<td>20-bit</td>
<td>t-t₀ < 0.3 ns E>200 KeV</td>
<td>~3,000</td>
<td>30 Tb/s</td>
</tr>
</tbody>
</table>

- Total data rate similar to HLT at HL-LHC ~ **streaming operation likely feasible.**

- Bandwidth to disk < 100 Gb/s
 - 1.5 kHz if assuming full event size
 - For comparison, rate at 10 TeV and L=10^{35} cm^{-2} s^{-1} for Higgs = 0.1Hz, VBF WW=1Hz
 - Some filtering makes sense to reduce event content
Summary and Outlook

- Presented an initial Muon Collider detector concept and the corresponding preliminary performance
- General theme – highly granular detectors with high timing resolution
- Snowmass papers in preparation (physics performance and technology R&D)

- Baseline established. Many avenues for improvements and optimization
- Committing today to a particular technology is probably premature
 - Develop further R&D efforts
 - Maintain synergies with other collider proposals