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§ Reminder: SiPMs & Digital SiPMs

§ Motivation for Fiber Readout

§ Chip Architecture

§ Characterisation

§ Outlook and Summary
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§ Goal: Detect a single photon
§ Problem:

• This photon creates only one electron-hole pair when absorbed
• This charge is very small and very hard to see directly (electronics noise!)

§ Solution: Amplify the signal in the device
• Create a diode with a very high field in the depletion region.

This needs strong doping & a ‘high’ external voltage (30-300 V) 

Single Photon Avalanche Photo Diode (SPAD)
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strong n doping

Collection
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E

E

amplification
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• Carriers drift from the depletion=collection region to the amplification region
• They are accelerated and create secondary ionization
→ an avalanche is created, leading to a large charge (105-106 eh pairs)

• This normally discharges the device so that the fields drop and avalanche stops
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§ How to get a signal proportional to # photons?
• Add many SPADs in parallel with separate quench resistors
• Each SPAD (Single Photon APD) works in ‘Geiger’ mode
• The total signal is proportional to the number of fired cells,

i.e. to the number of detected photons

§ Drawbacks:
• Breakdown of a single SPAD

creates a large (voltage) signal
‘internally’ but only a only a small
(voltage) fast signal ‘outside’

• Readout ASIC needed
• Power!
• Complex mechanics

• One ‘noisy’ cell degrades device

‘Silicon Photomultiplier’ (SiPM, MPPC)
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§ An obvious extension is to add NMOS and PMOS transistors:

“CMOS SPADs”  or “Digital SiPMs” 

§ Problem:
• SiPMs manufacturers cannot make transistors (many process steps & know-how)
• CMOS vendors produce SPADs of poor quality

§ Solution:
• Some CMOS vendors introduce extra processing steps and use suited wafer 

material to improve SPAD quality
• This is steered by the market: High demand → more vendors…

CMOS SPADs
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§ Advantages (compared to ‘SiPM + ASIC’)
• Very high signal per SPAD (‘3V’)
• Can disable ‘broken’ (noisy) SPADs
• Specialized readout architectures possible

(gating, summing, TDC, …)
• Lower power (to be shown…)
• Fine granular 2 D position information available
• Simple mechanics (only one component)
• Lower cost (to be shown…)

§ Drawbacks
• Often higher dark noise (but: switch off bad SPADs!)
• Reduced fill factor (from pixel circuitry)
• Quantum efficiency harder to optimize
• CMOS technology often ‘simple’ (we use 350nm, 4M)

• Limited Density → must reduce # MOS
• ‘Slow’

Why CMOS SPADs?
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Readout of Optical Fibers:
Motivation
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§ Some detectors place scintillating fibres in the sensitive volume and detect 
the light ‘outside’

§ Example: ‘Scintillating Fibre Tracker’ of LHCb

Optical Fiber Readout

LHCb @ CERN

3-4 fibres / mm.
Critical alignment!
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§ SiPM Arrays + Boards + Cables + dedicated ASICs (e.g. PACIFIC in LHCb)

§ Many parts !
§ Critical Alignment !
§ Expensive !
§ Modest timing !

State of The Art
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60 µm SPAD pitch



Using CMOS SPADs:
Concept and Implementation Details
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§ Each SPAD can be freely assigned to a ‘group’ (by programming the chip)
§ # of hits in a group is ‘counted’ and sent to a (single) output pin per group

• Alignment (of fibres) fully uncritical
• No dark noise from ‘unused’ SPADs
• Simple system with only one element (sensor + readout) 
• Fair timing (~ 500ps so far)

SPAD Group Readout Architecture
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Concept of Group Assignment
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§ Assigning EACH SPAD on the chip to EACH group would require too many 
configuration bits.

Architectural Challenge
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§ Solution: Exploit that groups contain ‘only’ neighboring SPADs
• Work at column level

• Each column has 4 ‘local’ groups
• A SPAD can contribute to

each such group (→ 4 bits/SPAD)

• 4 ‘group repeaters’ buffer the local
group signals

• Local groups are then merged in
the periphery to ‘final’ groups

• Each merged group is assigned to
a hit processors (from a pool) 



§ 2 different chip versions
§ 24 / 32 rows of SPADs → 1/1.8 mm height
§ ‘Arbitrary’ active width (8mm for now)

Demonstrator Chips

1 / 1.8 mm
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Chip Detail
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(42 µm)2 for Chip A (ff=67%)
(56 µm)2 for Chip B (ff=75%)

- No circuitry in SPAD Matrix
→ maximize fill factor.

- Signals are routed to logic above/below



Circuit Detail 1: Circuit per SPAD
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§ Low bus impedance by diode-connected PMOS
• Many such groups – must watch power dissipation!

Circuit Detail 2: Hit Repeater
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§ Unused processors can be disabled (~150 uW / processor)

Circuit Detail 3: Hit Processor (simplified)
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Chip on Test Board
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Only a fraction of the hit 
processors are bonded



§ Hit ‘arrival’ time given by rising edge
§ Group Multiplicity is encoded as pulse width
§ Low # of photons expected in application. Multiplicities up to 30 tested

• Resolution degrades for many hits due to mismatch of current sources
• Still need to optimize settings…

Chip Operation: Multiplicity Output

Electronic injection to 1,2,3,5 SPADs

(time scale is different due
to different bias settings)Photon arrival time

Number of Photons
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(BSc thesis R. Zimmermann)

Hit Processor Output:



§ Larger groups slow down signals
(large capacitance)

§ Jitter for groups ’close’ to
hit processor is < 500ps

§ Depends very much on power allowed

Chip Operation: Jitter
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§ Single scintillating fiber illuminated with radioactive source
• (Fiber not touching chip -> wide light spread)

Readout of Single Fiber

ASICs for Photon Detection with SPADs P. Fischer, Terascale Detector Workshop 2022, Page 22



§ This bundle nicely shows that fiber alignment is not critical:

Imaging of Fiber Bundles
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(BSc thesis B. Maisano, PI)



Next Steps
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§ Establish FPGA code to precisely measure Hit Processor signal edges
• So far oscilloscope is used -> very slow

§ Construct setup to cool SPADs
• Reduce Dark Count Rate

§ Improve coupling of fiber to Chip
• Use flip chip mounting (see next slide)

§ Measure many groups simultaneously

§ Prepare new chip submission with
• Some bug fixes
• faster bus signals

Next Steps
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Dark Count Rate
(measured on different chip)



§ Compact Mechanics
§ Simple fiber mounting

Flip Chip Assembly
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§ A chip for the detection of photons in optical fibers has been designed

§ SPAD groups at arbitrary positions can be defined in software

§ Chip has purely digital outputs (pulse – width coded):
• Event Time has a jitter of < 500 ps for small groups
• Few photons can be clearly distinguished
• Photon number of up to 30 are possible 

§ First coupling to fiber bundles has been successful

§ The proposed concept could provide compact, low power, cost efficient 
readout for large fiber systems

Summary
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Thanks for your attention!

Questions?
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