

CMOS SPAD Sensor Chip for the Readout of Scintillating Fibers

Prof. Dr. Peter Fischer, Benedict Maisano, Robert Zimmermann

Institute for Computer Engineering (ZITI) and Physics Institute (PI), Heidelberg University

Content

- Reminder: SiPMs & Digital SiPMs
- Motivation for Fiber Readout
- Chip Architecture
- Characterisation
- Outlook and Summary

Single Photon Avalanche Photo Diode (SPAD)

- Goal: Detect a single photon
- Problem:
 - This photon creates only one electron-hole pair when absorbed
 - This charge is *very* small and *very hard to see directly* (electronics noise!)
- Solution: Amplify the signal in the device
 - Create a diode with a very high field in the depletion region. This needs strong doping & a 'high' external voltage (30-300 V)

ш

- Carriers drift from the depletion=collection region to the amplification region
- They are accelerated and create secondary ionization
 - \rightarrow an *avalanche* is created, leading to a *large charge* (10⁵-10⁶ eh pairs)
- This normally discharges the device so that the fields drop and avalanche stops

'Silicon Photomultiplier' (SiPM, MPPC)

UNIVERSITÄT HEIDELBERG

- How to get a signal proportional to # photons?
 - Add many SPADs in parallel with separate quench resistors
 - Each SPAD (Single Photon APD) works in 'Geiger' mode
 - The total signal is proportional to the number of fired cells, i.e. to the number of detected photons

Drawbacks:

- Breakdown of a single SPAD creates a large (voltage) signal 'internally' but only a only a small (voltage) fast signal 'outside'
- Readout ASIC needed
 - Power!
 - Complex mechanics
- One 'noisy' cell degrades device

CMOS SPADs

An obvious extension is to add NMOS and PMOS transistors:

- Problem:
 - SiPMs manufacturers cannot make transistors (many process steps & know-how)
 - CMOS vendors produce SPADs of poor quality
- Solution:
 - Some CMOS vendors introduce extra processing steps and use suited wafer material to improve SPAD quality
 - This is steered by the market: High demand \rightarrow more vendors...

Why CMOS SPADs?

UNIVERSITÄT HEIDELBERG

- Advantages (compared to 'SiPM + ASIC')
 - Very high signal per SPAD ('3V')
 - Can disable 'broken' (noisy) SPADs
 - Specialized readout architectures possible (gating, summing, TDC, ...)
 - Lower power (to be shown...)
 - Fine granular 2 D position information available
 - Simple mechanics (only one component)
 - Lower cost (to be shown...)
- Drawbacks
 - Often higher dark noise (but: switch off bad SPADs!)
 - Reduced fill factor (from pixel circuitry)
 - Quantum efficiency harder to optimize
 - CMOS technology often 'simple' (we use 350nm, 4M)
 - Limited Density \rightarrow must reduce # MOS
 - 'Slow'

Readout of Optical Fibers: Motivation

CMOS SPAD Chips for Scintillating Fiber Readout

P. Fischer, VCI 2022, Page 7

Optical Fiber Readout

Example: 'Scintillating Fibre Tracker' of LHCb

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

State of The Art

SiPM Arrays + Boards + Cables + dedicated ASICs (e.g. PACIFIC in LHCb)

arXiv:1011.0226v1 arXiv:1710.08325v1

Using CMOS SPADs: Concept and Implementation Details

CMOS SPAD Chips for Scintillating Fiber Readout

P. Fischer, VCI 2022, Page 10

SPAD Group Readout Architecture

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

- Each SPAD can be freely assigned to a 'group' (by programming the chip)
- # of hits in a group is 'counted' and sent to a (single) output pin per group

- Alignment (of fibres) fully uncritical
- No dark noise from 'unused' SPADs
- Simple system with only one element (sensor + readout)
- Fair timing (~ 500ps so far)

Concept of Group Assignment

Architectural Challenge

- Assigning EACH SPAD on the chip to EACH group would require too many configuration bits.
- Solution: Exploit that groups contain 'only' neighboring SPADs
 - Work at column level
 - Each column has 4 'local' groups
 - A SPAD can contribute to each such group (→ 4 bits/SPAD)
 - 4 'group repeaters' buffer the local group signals
 - Local groups are then merged in the periphery to 'final' groups
 - Each merged group is assigned to a hit processors (from a pool)

Demonstrator Chips

Chip Detail

CMOS SPAD Chips for Scintillating Fiber Readout

P. Fischer, VCI 2022, Page 15

Circuit Detail 1: Circuit per SPAD

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Circuit Detail 2: Hit Repeater

- Low bus impedance by diode-connected PMOS
 - Many such groups must watch power dissipation!

Circuit Detail 3: Hit Processor (simplified)

ruprecht-karls-UNIVERSITÄT HEIDELBERG

• Unused processors can be disabled (~150 uW / processor)

Chip on Test Board

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Only a fraction of the hit processors are bonded

Chip Operation: Multiplicity Output

- Hit 'arrival' time given by rising edge
- Group Multiplicity is encoded as pulse width
- Low # of photons expected in application. Multiplicities up to 30 tested
 - Resolution degrades for many hits due to mismatch of current sources
 - Still need to optimize settings...

Hit Processor Output:

(BSc thesis R. Zimmermann)

Chip Operation: Jitter

Γ

Column of 'my'

hitprocessor

column-wise mean jitter

Columns of

'neighbor' hitprocessor

1000

900

800

700

600

500

400

jitter [ps]

- Jitter for groups 'close' to hit processor is < 500ps
- Depends very much on power allowed

(R. Zimmermann)

Readout of Single Fiber

ruprecht-karls-UNIVERSITÄT HEIDELBERG

- Single scintillating fiber illuminated with radioactive source
 - (Fiber not touching chip -> wide light spread)

Imaging of Fiber Bundles

(BSc thesis B. Maisano, PI)

ruprecht.karls. UNIVERSITÄT HEIDELBERG

• This bundle nicely shows that fiber alignment is not critical:

Next Steps

CMOS SPAD Chips for Scintillating Fiber Readout

P. Fischer, VCI 2022, Page 24

Next Steps

- Establish FPGA code to precisely measure Hit Processor signal edges
 - So far oscilloscope is used -> very slow
- Construct setup to cool SPADs
 - Reduce Dark Count Rate
- Improve coupling of fiber to Chip
 - Use flip chip mounting (see next slide)
- Measure many groups simultaneously
- Prepare new chip submission with
 - Some bug fixes
 - faster bus signals

Flip Chip Assembly

ruprecht.karls. UNIVERSITÄT HEIDELBERG

Summary

- A chip for the detection of photons in optical fibers has been designed
- SPAD groups at arbitrary positions can be defined in software
- Chip has purely digital outputs (pulse width coded):
 - Event Time has a jitter of < 500 ps for small groups
 - Few photons can be clearly distinguished
 - Photon number of up to 30 are possible
- First coupling to fiber bundles has been successful

 The proposed concept could provide compact, low power, cost efficient readout for large fiber systems

Thanks for your attention!

Questions?

CMOS SPAD Chips for Scintillating Fiber Readout

P. Fischer, VCI 2022, Page 28