

Progress and perspectives of FARICH R&D for the Super Charm-Tau Factory project

Alexander Barnyakov¹, Victor Bobrovnikov¹, Alexander Daniluyk², Michael Du[°]ren³, Avetik Hayrapetyan³, Alexander Katcin¹, Sergey Kononov¹, Eugeny Kravchenko¹, Nikolay Podgornov¹, Svetlana Pomuleva¹, Anton Shalygin², Michael Traxler⁴, Hasim Kayan⁴

¹ Budker Institute of Nuclear Physics & Novosibirsk State University, Novosibirsk, Russia

²Boreskov Institute of Catalysis, Novosibirsk, Russia

³JLU, Giessen, Germany

⁴ GSI/FAIR, Darmstadt, Germany

Vienna Conference on Instrumentation 2022

21-25 February 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072

E-mail to: a.yu.barnyakov@inp.nsk.su

PID system for SCTF project

Requirements:

- π/K separation > 4σ up to 3.5 GeV/c
- μ/π suppression ~1/40 for to 0.5-1.2 GeV/c
- good μ/π separation at low momentum

Several option are being considered:

FARICH, FDIRC, ASHIPH, TOF

n=1.030 6.0mm

n=1.027 6.3mm

n=1.024 6.7mm n=1.022 7.0mm

A.Yu.Barnyakov et al., NIMA 958 (2020) 162352

A.Yu.Barnyakov et al., JINST 15 (2020) 04, C04032

Aerogel

Particle

2012 test beam: μ/π separation >3 σ at P=1 GeV/c was demonstrated

- Proximity focusing RICH
- 4-layer or gradient aerogel radiator n_{max} = 1.05 (1.07?), thickness 35 mm
- 21 m² total photon detector area
 - SiPMs in barrel (16 m²)
 - MCP PMTs in endcaps (5 m²)
- ~10⁶ pixels with 4 mm pitch

Variable n allows to increase N_{pe} using thicker radiator without compromising $\sigma_{\Theta c}$

T.lijima et al., NIM A548 (2005) 383 A.Yu.Barnyakov et al., NIM A553 (2005) 70 A.Yu. Barnyakov, et al., NIM A 732 (2013) 35

Beam tests with FARICH in 2021 at BINP

- Electrons with E=2 GeV are used
- 4 MaPMTs (H12700 from Hamamatsu with pixel 6x6 mm) were used with different masks to reduce effective pixel size:
 - Ø1 mm to investigate contribution from aerogel itself
 - 3x3 mm to measure realistic Single Photon Resoulution (SPR)
- Three GEMs are used at beamline:
 - ✓ Two before aerogel sample and one behind
 - It alows us to restore Chernekov angle for each detected photon and mitigate multiple scattering affects at beam-line.

Focusing aerogel samples with 100x100mm size produced and tested in 2020-2021

G N Abramov *et al* 2014 *JINST* **9** C08022

GEM-detectors

llection 🔮 FARICH p

Nal–calorimeter

Beam test results & simulation

Expected $e/\mu/\pi$ – separation up to 1.5 GeV/c

FEE based on FPGA-TDC

Amplifier board 27×27 mm² size

- 14-layer PCB
- 30x gain, 64 channels
- couples to KETEK 8×8 SiPM array

Simulated single photon pulse shapes from amplifier for different input resistance. ~ 22mV amplitude can be achieved.

• Each module readouts 6 arrays 8x8 pixels and equipped with optical transceiver.

2 2m 3 € €4 h

անավաղնակակակակակ

• Thickness of 5-layer design is less than 5 cm.

DC-DC convertor board

- goes behind the backplane
- 51×84 mm² size
- provides power to SiPMs, amplifiers, FPGA
- uses air inductive coils to operate in the detector magnetic field
- power, trigger & clock connectors

The first tests of FaRICH-Auslese-System

FPGA-TDC (FaRICH-Auslese-System) to readout 2304 SiPMs developed and produced in GSI.

The tests performed bu Mechael Traxler, Matthias Hoek and Merlin Böhm at HIM-Institute in Mainz.

- Everything works as expected: ToT(Time) is as expected for single photon distribution.
- Single photon detection time resolution without any corrections and proper TDC calibration is about 380ps (it is good enough value for FARICH), while intrinsic resolution of TDC is about 8÷12 ps.
- A lot of dark counts are in the data (every 3rd hit is noise). Thermostabilization or cooling is needed for future tests.

FARICH event with expected dark hits rate

Main motivation to implement NN approach for event reconstruction in FARICH is high level of SiPM intrinsic noises, which also will depend on accumulated dose of neutrons during the experiment.

DCR ~ 10^6 cps/mm².

Event reconstruction in FARICH using Neural Networks

 N_{hits} (i, j, k) $i - bin on \phi_c$

 $j - bin on \theta_c$

Photon detector

- ON Semiconductor (SensL) ArrayJ-30020-64P-PCB
- Pixel size 3.16×3.16 mm²
- Pixel pitch 3.36 mm
- U_{bias} = 2.5V
- λ_{max}≈400 nm, PDE_{max}≈ 38%
- Sensor geom. fill factor ≈ 88%

Radiator

- 4-layer focusing aerogel
- n_{max} = 1.05
- 35 mm thickness

PD-Radiator distance: 200 mm

Full FARICH GEANT4 simulation was used for NN training and comparison of NN based reconstruction approach with geometrically based one

Implementation

- Python with Pandas, TensorFlow etc. • packages
- Fully connected feedforward NN ٠
- Feature extraction with analytical • reconstruction of hit θ_c , ϕ_c ,
- Obtain particle's ٠ β from a single NN output

Results of NN event reconstruction

- NN reconstruction gives the best β error 5.10⁻⁴ for 1 Mcps/mm² dark count rate
- Minimum β error for geometrical reconstruction (w/o dark noise) ~ 4.10⁻⁴
- Theoretical limit (w/o dark noise) ~ 3.10⁻⁴

Plans :

- compare NN reco vs "classical" reco with dark noise
- compare speed

Summary

- Results of FARICH beam tests in 2021 demonstrate single photon resolution at the level of 10 mrad. It is very close to theoretical expectations for ideal focusing aerogel refractive index profile (7 mrad). And it is enough to provide μ/π -separation at the level of 3 STDEV up to momentum equal to 1.5 GeV/c.
- First version of compact FEE for FARICH prototype based on FPGA was developed and produced. First test results looks very promissing.
- Reconstruction of particle velocity in FARICH with help of Neural Networks was developed. The reconstruction demonstrates very good ability to work with high level of intrinsic noises.