

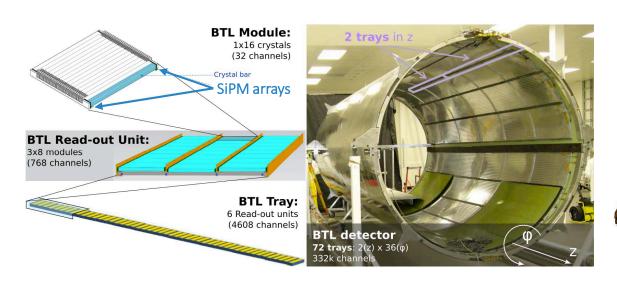
ALDO2

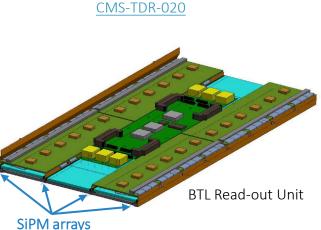
A multi-function rad-hard linear regulator for SiPM-based detectors

Paolo Carniti (a,b), Claudio Gotti (a), Gianluigi Pessina (a)

(a) INFN of Milano Bicoccab) University of Milano Bicocca

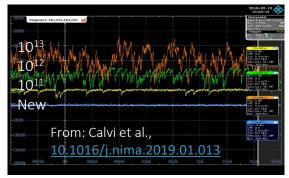
VCI2022- The 16^{th} Vienna Conference on Instrumentation 21/02/2022


Content

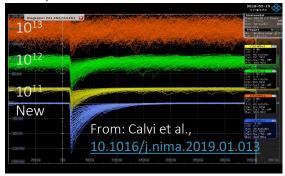

- Introduction
 - SiPM-based detectors for HEP
 - Challenges of SiPMs at HL-LHC
 - Power supplies for LHC detectors
- ALDO2
 - General scheme
 - HV regulator
 - LV regulator
 - Technology and prototyping
 - Radiation hardening techniques
- Measurements
 - HV regulator
 - LV regulator
 - Radiation hardness
- Conclusions
 - Chip production

Introduction: SiPM-based detectors for HEP

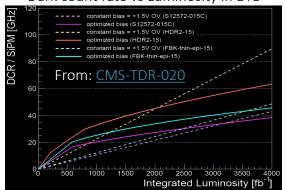
- SiPMs/MPPCs are gaining more and more popularity in the HEP community, as they offer many substantial advantages over other classes of photodetectors like vacuum devices
 - Compactness, robustness, small pixel size, low voltage bias, excellent linearity and dynamic range, high photon detection efficiency, immunity to magnetic fields
- On the other side they also have a few, but very crucial, drawbacks
 - High dark current, poor radiation hardness, optical cross-talk, after-pulses, precise bias
- At HL-LHC, several detectors are planning to adopt them as the baseline photodetectors
 - In CMS: Barrel Timing Layer (BTL, see below) and High-Granularity Calorimeter (HGCAL)



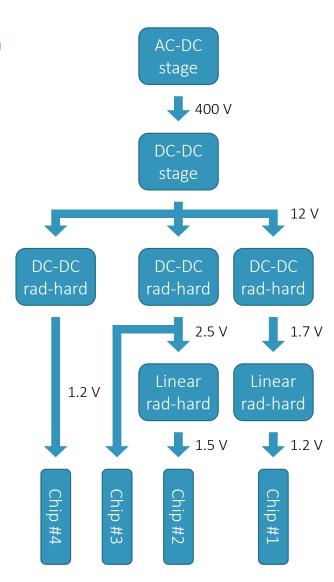
For more info on CMS BTL, see


Introduction: Challenges of SiPMs at HL-LHC

- The main challenge of using SiPMs at HL-LHC comes from their poor radiation hardness
 - Dark count increases up to tens of GHz at 10^{14} n_{eq}/cm^2
 - Power consumption up to about 50 mW/SiPM
 - Breakdown voltage shifts with radiation damage
 - On-detector I-V curves are required to set optimal working point (gain and dark current have a strong dependence on SiPM overvoltage)
- Possible mitigations only marginally improve the situation
 - Cooling (typically limited to liquid CO₂ in LHC detectors)
 - Annealing (also limited in tight detectors)
- These challenges also affects the power supplies of SiPMs
 - O(1000) SiPMs are connected in parallel \rightarrow ~50 W load
 - Bias voltage stability and noise are crucial for the precise setting of the working point (but usually bias supplies are very far from the detectors)
 - Bias voltage trimming in front-end chips adds complexity due to AC coupling and added parasitics on the read-out node

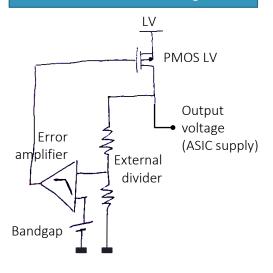

Dark counts at -30°C with irradiated SiPMs

Laser pulses at -30°C with irradiated SiPMs

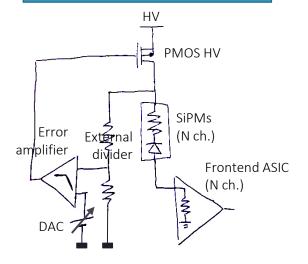

Dark count rate vs Luminosity in BTL

Introduction: Power supplies for LHC detectors

- Power distribution at LHC is usually based on a multi-stage approach
 - AC-DC(HV) stage outside experimental area (>100 m from detector)
 - First DC(HV)-DC(LV) stage in experimental area (30 m from detector)
 - Point-of-load (PoL) rad-hard DC-DC stage on the front-end boards
- But...
 - ...modern front-end chips may require multiple supplies
 - ...with tighter noise and stability specifications
 - ...and chips from different technologies may coexist on the front-end
- Furthermore, as highlighted before, photodetectors like SiPMs also require precise PoL power supply for their bias voltage
- There is the need to design a further stage
 - More modularity → One ASIC per regulator, less current per channel
 - More thermal stability and less noise → Linear regulator
 - Suitable for several uses → Adjustable voltage
 - Able to provide SiPM bias voltage → "HV" technology
 - With additional features → Output current measurement, shutdown, overtemperature and overcurrent protections, etc.
 - Able to work inside detectors → Rad-hard
- We designed an ASIC for all these functions, ALDO2

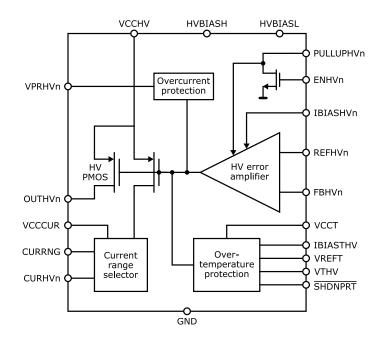

ALDO2: General scheme

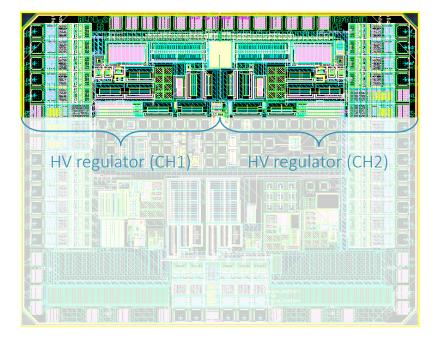
ALDO2 features 4 independent and fully adjustable linear regulators


The regulator scheme is the classic low dropout scheme, with an error amplifier and PMOS pass element

- LV regulators
 - Voltage reference is provided with an internal bandgap
 - Output voltage can be adjusted with an external divider
- HV regulators
 - Both inputs of the error amplifier are available externally
 - The fixed range can be adjusted with an external divider
 - Output value can be changed during operation by applying an analog voltage from a DAC on the other input of the error amplifier
 - In BTL the DAC is embedded in the front-end chip, while HGCAL will use the DAC in the CERN slow control chip (GBT-SCA)

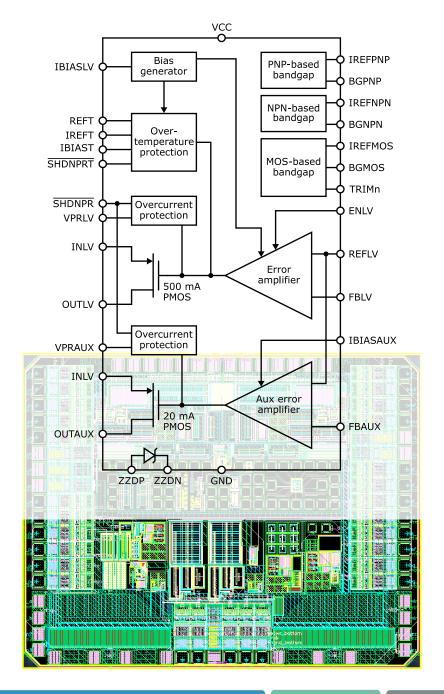
Basic scheme of the LV regulator

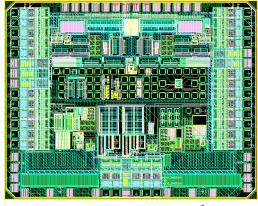

Basic scheme of the HV regulator



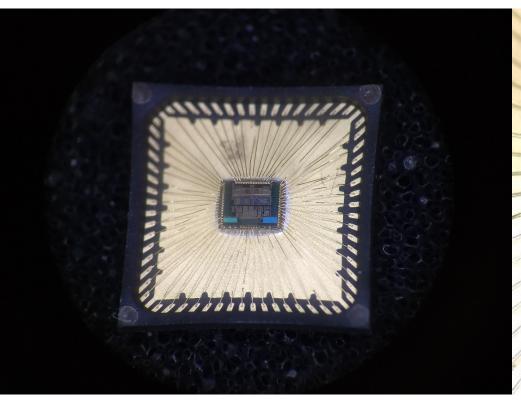
ALDO2: HV regulator

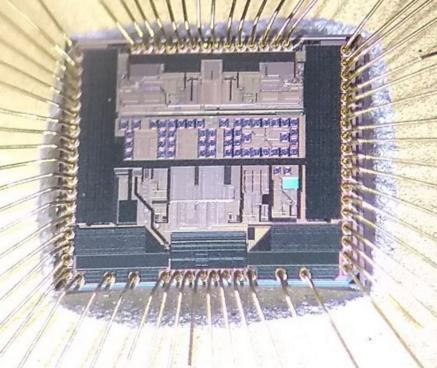
- Bias voltage generation for groups of 16 SiPMs \rightarrow 2 channels per chip
- Input voltage: 25 V 70 V
- The DAC used in BTL has 8 bits with two ranges:
 - Range 1: 100% 74% of output voltage with 0.1% LSB (8 bit)
 - E.g., 44 V 32.7 V, with 44 mV LSB (SiPM specs still floating)
 - Range 2: 95% 82% of output voltage with 0.05% LSB (8 bit)
 - E.g., 41.8 V 36.3 V, with 22 mV LSB (SiPM specs still floating)
- Maximum output current: 45 mA (current limit 55 mA)
- Minimum dropout:
 - <1 V on not irradiated chips (> 97% efficiency @ 38 V)
 - 3 V with EOL irradiation (92% efficiency @ 38 V)
- External low ESR capacitor for stability
- Channels can be individually disabled
 - If a SiPM fails with a short, only its group of 16 SiPMs is affected
- Protected against overcurrent and overtemperature
- Allows output current measurement by mirroring output current (2 ranges available, factor x20 between the two)
 - Voltage conversion using an external resistor, range can be tuned




ALDO2: LV regulator

- Power supply filtering and stabilization
- Input voltage: 1.7 V 3.3 V (at maximum load and EOL radiation levels)
- 2 channels:
 - Main regulator, 500 mA current output
 - Aux regulator, 20 mA current output, used for internal references but can be used by other components as a precise buffered reference
- Power efficiency: 71% (output 1.2 V, input 1.7 V, load 0.5 A)
- 3 bandgap voltage references:
 - 2 based on BJTs, better stability and precision, worse radiation hardness, nominal value about 1.2 V
 - 1 based on MOSFETs, better radiation hardness, trimmable, nominal value about 630 mV
- External low ESR capacitor for stability
- Output enable, allowing the shutdown of individual ASICs
- Protected against overcurrent (typical limit 900 mA) and overtemperature

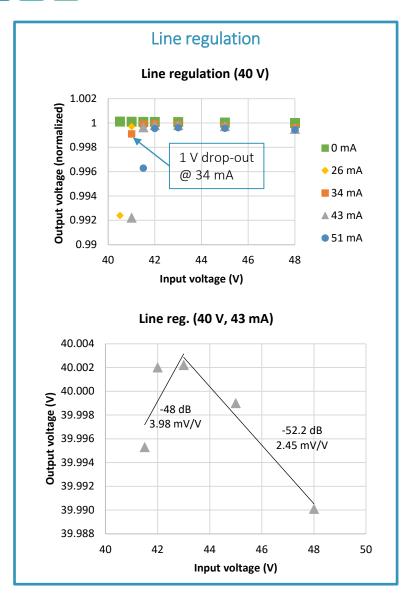


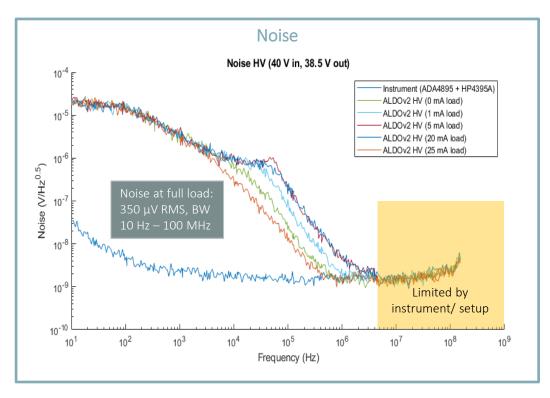

ALDO2: Technology and prototyping

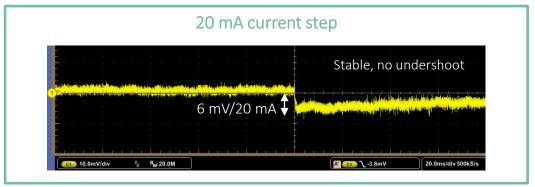
- The chip is designed in onsemi I3T80 HV CMOS technology (350 nm), which proved to be sufficiently radiation tolerant in other CERN designs (FEAST DC-DC) and publications (see Faccio et al., 10.1109/TNS.2010.2049584)
- ALDO2 was produced in 3 prototypes (ALDO2v0 in 2019, ALDO2v1 in 2020, and ALDO2v2 for production run in 2022)
- The package is QFN64 (9x9 mm²)

Die area 2.47 x 1.95 mm²

ALDO2: Radiation hardening techniques

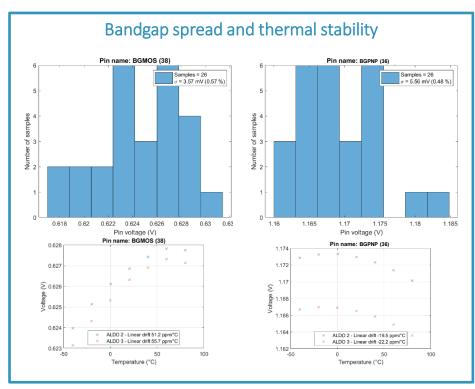

BTL maximum expected radiation levels at 3000 fb⁻¹

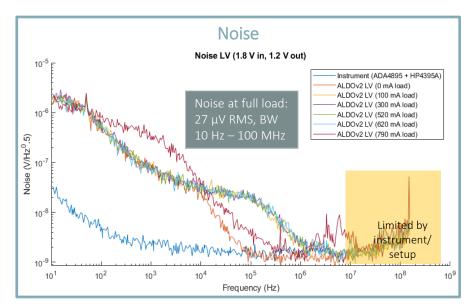

TID	Neutron fluence (1 MeV eq.)	Charged hadron fluence
3.2 Mrad	1.9e14 cm ⁻²	1.5e13 cm ⁻²

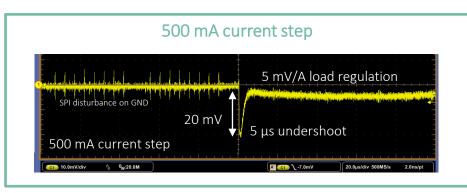

- Target radiation levels in hottest areas of BTL is within reach of I3T80 technology (HGCAL has lower radiation levels)
- Several radiation hardening techniques adopted
 - Enclosed layout for all LV NMOS transistors
 - The HV NDMOS implements a special "enclosed/guarded" layout to reduce leakage above 100 krad (extended P+ diffusion around the source contact to avoid parasitic gate formation in the lateral oxide)
 - On resistance of HV MOSFETs increases with displacement damage
 - Not super critical for our application, effect minimized by using larger transistors
 - Wide use of guard rings
 - Increased spacing between devices and cells
 - High density of substrate contacts
 - Strict adoption of anti-latchup rules provided by the technology

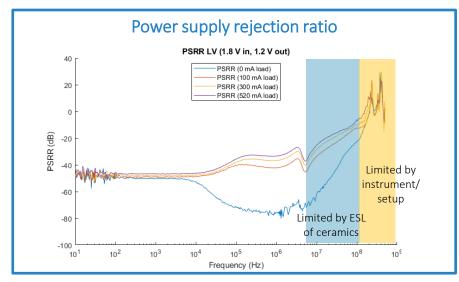
Measurements: HV regulator

Selected measurements...

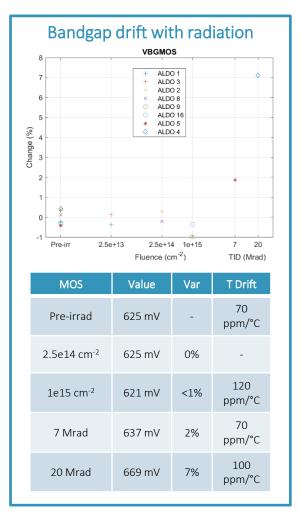


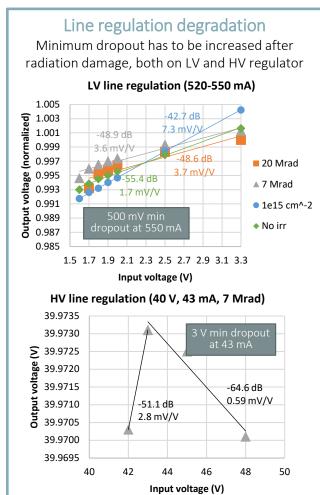


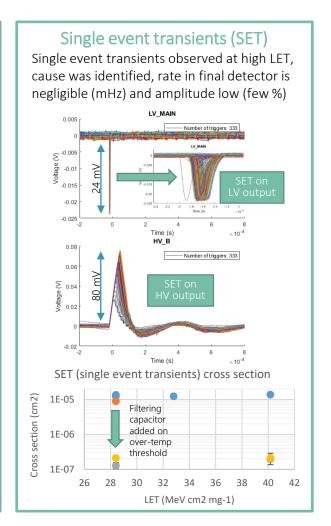



Measurements: LV regulator

Selected measurements...

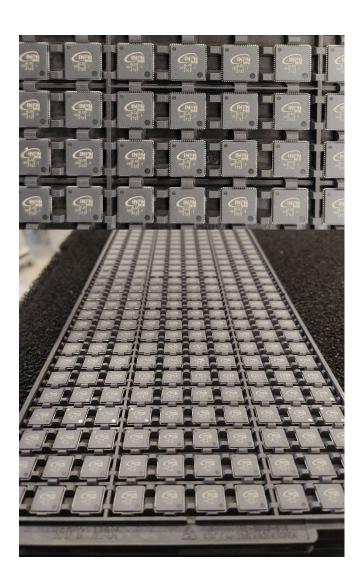






Measurements: Radiation hardness

• The chip was successfully tested with TID (X-rays), displacement damage (neutrons in nuclear reactor) and single-event effects (heavy ions), beyond the expected radiation levels. A few selected results...



Conclusions: Chip production

- The chip has completed its development phase
 - Some measurements are still ongoing, like the stress tests to determine reliable operating parameters over long periods of time
 - Few minor changes proposed during PRR (production readiness review) will be implemented directly in production run (fail-safe)
- Production has started, chips expected in Q3 2022
 - Chip production had to be anticipated wrt HL-LHC schedule because onsemi I3T80 fab in Oudenaarde (Belgium) will be sold and has stopped MPW services in 2022
 - 45k chips produced, more than double the needs of BTL and HGCAL (19.2k), just to be covered in case of issues in production phases
 - An alternative I3T80 fab in Gresham (USA) is available, but was not qualified for radiation hardness
 - Can be studied if ALDO2 project will continue for other detectors
 - ALDO2v1 demonstrated very high yield (103 out of 103) and small spread between wafers (< 1%) → No individual chip testing is planned

Thanks for reading till here