# **Enhanced Lateral Drift Sensors**

#### Improving resolution with enhanced lateral drift (ELAD) sensors



Anastasiia Velyka, Hendrik Jansen, Simon Spannagel 21–25 Feb 2022 | VCI2022 - The 16th Vienna Conference on Instrumentation.

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES PIER DESY Strategy Fund



EMFT

#### **Charge sharing**

Towards the theoretical optimum of position resolution



- Standard sensor design:
  - charge in the left part of pitch collected by 1st strip
  - charge in the right part of pitch collected by 2nd strip
- In an ideal case:
  - charge distribution between 1st and 2nd strip is linear  $\rightarrow$  best charge sharing

#### **Concept of an Enhanced Lateral Drift Sensor**

Manipulating the electric field

- Charge carriers in sensor follow the electric field lines
- How to achieve improved position resolution of charged particle sensors?
  - $\rightarrow$  Induce lateral drift by locally engineering the electric field
- Introduce a lateral electric field inside the bulk



#### **Concept of an Enhanced Lateral Drift Sensor**

Manipulating the electric field

• Buried implants  $\rightarrow$  regions of additional doping



- Lateral electric field  $\rightarrow$  repulsive/attractive areas inside the bulk
- Modified drift path of the charge carriers

## **SYNOPSYS**<sup>®</sup>

#### **Simulations of the ELAD Sensors**

**TCAD Electric Field & Transient Simulations** 

• Buried **p**<sup>+</sup>- and **n**<sup>+</sup>-implants create the lateral electric field in the bulk.





TCAD  $\eta$  - function 150  $\mu m$  ELAD  $n_{di}\text{=}3\times10^{15}\,cm^{\text{-}3}$ 



- p-ELAD: optimal voltage  $\rightarrow$  300V and 350V
- n-ELAD: optimal voltage  $\rightarrow$  250V and 300V
- tuning of the lateral and longitudinal components of the electric field

#### **SYNOPSYS**<sup>®</sup>

#### nELAD CP2

DESY.

TCAD simulations | 50  $\mu m$  thick CP2 n-ELAD sensor  $n_{di}\text{=}3\times10^{15}\,cm^{\text{-}3}$ 

- smaller distance between the buried implants layers
- wider buried implants





#### • ELAD design optimised to the read-out pitch and thickness

A. Velyka - Enhanced Lateral Drift Sensors - 21–25 Feb 2022 | VCI2022 - The 16th Vienna Conference on Instrumentation.



Allpix<sup>2</sup> resolution studies

• To estimate the position resolution  $\rightarrow AIIPix^2$  simulations

• Allpix<sup>2</sup> - generic simulation framework for silicon tracker and vertex detectors

Simulations with MC particles

Based on Geant4 and ROOT

• Uses TCAD electric field



## Allpix<sup>2</sup> resolution studies





9

#### **Simulations of the ELAD Sensors**



Allpix<sup>2</sup> resolution studies. Rotation scans.

Understand ELAD behaviour for non-perpendicular tracks

• Object under study

150 um thick n-ELAD with TP3 50 um thick n-ELAD with CP2

Compare with

150 um thick n-standard TP3 50 um thick n-standard CP2

Methodology

Scan incidence angle from 0 to 60 degrees in the y-direction!

 $\rightarrow$  Superimpose effect of 'geometrical' charge sharing with ELAD-charge-sharing ( $\rightarrow$  many data points, even more plots, ...)



10





#### Allpix<sup>2</sup> resolution studies. Rotation scans.



A. Velyka - Enhanced Lateral Drift Sensors - 21–25 Feb 2022 | VCI2022 - The 16th Vienna Conference on Instrumentation.

DESY.

#### **ELAD** with multiplication layer



A. Velyka - Enhanced Lateral Drift Sensors - 21–25 Feb 2022 | VCI2022 - The 16th Vienna Conference on Instrumentation.

**SYNOPSYS**<sup>®</sup>

## **ELAD with multiplication layer**



**TCAD Electric Field** 

DESY.

• Buried **p**<sup>+</sup>- and **n**<sup>+</sup>-implants create the lateral electric field in the bulk.



A. Velyka - Enhanced Lateral Drift Sensors - 21–25 Feb 2022 | VCI2022 - The 16th Vienna Conference on Instrumentation.



## **ELAD** with multiplication layer

#### **TCAD Transient Simulations**



- multiplication of the charge is achieved (~9x)
- more tuning needed
- aiming for 3 um spatial resolution at 55 um pitch combined with sub 100 ps timing resolution (with appropriate ASIC).

#### **Summary & Outlook**



#### Summary:

- Technologically challenging project aiming to reach the theoretical optimum of position resolution
- Interesting technology for future HEP detectors: RMS residual of 4.9 um @ 25 um pitch
- Bulk engineering opens new possibilities in sensor design

#### **Outlook:**

 Looking further into buried multiplication layer, especially concerning gain, depth and electric field close to read-out electrodes



