

Spatial resolution of CCD based UCN detectors

Benoit Clément - VCI - 02/2022

Ultra-cold neutrons (UCN)

When the neutron wavelength is greater than the interatomic distance

⇒ Coherent scattering on surfaces

Characterised by an effective Fermi potential:

$$V = \frac{2\pi\hbar^2}{m_n} < b^{coh} >$$

For neutron energy < Fermi potential: neutrons are reflected on a surface at every incidence angle.

These are Ultra-cold neutrons:

$$E < 250 \text{ neV } v < 7\text{m/s } \lambda > 0.2\text{nm}$$

4m/s neutron in a 50cm cubic box

UCNs can be stored in boxes, guided by material tube,...

UCNS are sensitive to gravity:

$$m_n g x (1m) = 100 neV$$

... but UCNs bounce of (most) detectors

UCNs detection

Neutron detection required a conversion material to produce charges particles (³He, ¹⁰B, ⁶Li, ²³⁵U, ²³⁸Pu) or gamma rays (Gd,...)

For UCN, the Fermi potential must be taken into account

Gaseous detector (3He), limiting factors:

- Fermi potential of entrance window:
- Absobtion/scattering losses within the window: thin foils

commonly used: Aluminum, titanium

Solid detector

- Fermi potential of the conversion layer
- Converted particle must escape the layer (Boron on silicon) or the conversion layer must be an active medium (LiF scintillators)

 $^{10}B: V_f = -3 \text{ neV (20\% of nat. boron)}$

n +
$$^{10}\text{B} \rightarrow ^{7}\text{Li} + \alpha$$
 , BR = 6.3% $\text{E}_{\text{Li}}\text{= }1014 \text{ keV}$ E_{α} = 1775 keV

n +
10
B \rightarrow 7 Li* + α \rightarrow 7 Li + α + γ , BR = 93.7%
E_{Li}= 841 keV E $_{\alpha}$ = 1471 keV

Quantum freefall and position sensitive detectors

We study the quantum free fall of a neutron : Bound state in a vertical potential mgz

Schrödinger equation :
$$\left(\frac{\hbar^2}{2m_i}\frac{\partial^2}{\partial z^2} + m_g g z\right) \psi = E \psi \ \Rightarrow \left(\frac{\partial^2}{\partial Z^2} + Z\right) \psi = 0$$

With :
$$z_0=\left(\frac{\hbar^2}{2m_im_ag}\right)^{\frac{1}{3}}\approx 5.87\mu m$$
 $E_0=m_gg~z_0\approx 0.602~{
m peV}$ $\epsilon=\frac{E}{E_0}$ $Z=\frac{z}{z_0}-\epsilon$

$$E_0=m_g g \ z_0pprox 0.602 \ \mathrm{peV}$$

Airy equation

$$\epsilon = \frac{E}{E_0}$$

$$Z = \frac{z}{z_0} - \epsilon$$

Boundary conditions $\psi(0) = \psi(+\infty) = 0$ quantify the energies E_k :

Two kind of observables

Quantified energies: transition between levels

Wavefunction: shape, nodes positions.

Need position sensitive detector with micrometric resolution

The UCNBox detector

To get a spatial information we use CCD sensors as charge particle detectors

- window less back-thinned CCD (Hamamatsu)
- 2048x64 pixels, 14x14 μm

UCN Boron piXels detector:

- line of 8 sensors (30 cm) to adapt to the GRANIT installation at ILL to observe neutron wavefunctions
 - mechanical support for alignment
 - dedicated electronics O. Bourrion et al. NIM. A880 (2018)

1 charge particle (1.4 MeV α) deposits energy in several pixels

4000 Reconstruction strategy:

- build 11x11 pixels clusters around «seed» pixels
- the cluster barycenter gives the particle position
- the cluster mean ADC count gives the energy

Measured energy of α /Li produced by neutron capture on 10 B

Realisation of the multilayer

Multilayer Ti-B-Ni deposed using microwave plasma-assisted cosputtering method

Ti-B-Ni conversion multilayer and efficiency

B.C. et al, *JINST* 14 (2019) 09, P09003

The conversion layer devised is:

20 nm entrance Ti layer

- → reduce reflection at low velocities
- → protects boron from oxidation

200 nm conversion ¹⁰B layer

→ optimum to convert UCNs and let charged particles out of the layer

20 nm back Ni layer

- → reflect hich velocities UCN
- → improve boron adhesion on silicon substrate

Measuring the spacial resolution

Place a piece of wire on the sufrace of the CCD $\,$ « Light » with neutrons or α particles and detect the wire shadow

Two datasets:

- 1.5MeV α particles over 6 μ m tungsten wire (no boron layer)
- UCN over 10μm Ni wires -> at ILL PF2 Test line

Approximtively 2.4mm of usable Ni wire and 3.5mm of W.

A few days of data, 0.5 to 0.7 particle per μm²

Problems

- Reconstruction the position and direction of the wire
- Projection along this direction and combining several wires
- Exctraction of the resolution : need MC simulation
- Quantifying the systematics

Estimation of density of points

Delaunay triangulation:

Given a set of points in 2D, find the triangle meshing that maximise the smallest angle of each triangle (tringle less flats as possible)

Standard tool for meshing in finite elements calculation: many optimized algorithms and

freely vailable codes!

Voronoi diagram:

compute the median of each segment in the Delaunay trangulation and compute their first instersections.

each original point is contained within one Voronoi cell, the surface can be used as a (inverse) density estimator: used in cellular biology, geography,...

Wire direction

Cut each wire in ~200µm segments, and manually select a band around the wire

d(x, y; a, b, c, d): distance of point (x, y) to the polynomial curve $y = ax^3 + b^{x^2} + cx + d$

Histograms of d gives the projected wire profile

Projected wires

The wire profile is fitted with an Erf function

The fitted σ is not the resolution yet has it includes shadowing effects due to the wire shape and diffusion of fastets UCNS through the wire.

Conversion to resolution

Use Monte-Carlo simulation to compute the conversion curve from fitted resolution to actual resolution.

Some uncontrolled parameters

- diffusivity of the wire surface
- velocity spectrum of UCNs

Similar exercise for alpha particles leads to

$$\sigma_{\alpha} = 1 \pm 0.1 \,\mu m$$

The systematic effect due to the reconstruction and fitting procedure is estimated by building fake wire images using the fitted parameters : $\sim 0.3 \mu m$

Sensor aging and hot pixels

Looking at the data, one noticies depleted vertical and horizontal lines

- → 11x11 squares around « hot » pixels (pixels with sometimes large noise that tend to displace the reconstructed hit toward them)
- → didn't appear in older measurement : degradation of sensor over time (multilayers are >3 years old, sensors kept in contact with air in a clean room)
- → Impossible to correct, but can be simulated : this effect alone leads to :

$$\sigma_{fit} = 1.9 \pm 0.2 \ \mu m \Rightarrow \sigma_{UCN} = 1.5 \ \mu m$$

Quadratically substracting to the previous result, one could extrapolated an expected resolution for a freshly coated sensor to

$$\sigma_{UCN} = \sim 1.3 \, \mu m$$

Summary and conclusion

A complete procedure to determine experimentaly the spatial resolution has been developed using the shadow of a thin wire in contact with the conversion layer The measured resolution on an «old» sensor is:

 $\sigma_{UCN}=2\pm0,2(stat)\pm0,3~(syst)$ µm. -50 and the resolution of a fresh sensor could lower to 1,3µm.

UCNBox is a UCN detectors using 8 CCD sensors coated with a Ti-¹⁰B-Ni multilayer with an efficiency of 84% designed to measure wavefunctions of free falling neutrons bouncing on a mirror.

One possible improvement: Use the energy of the α /Li to select particles with small energy loss, having a small angle w.r.t. the incident neutron. This should improve the resolution at the cost of statistics.

ADC count ∝ energv