

pLGAD: A Novel Detector Concept for Low Energy **Particles**

Waleed Khalid for the NoMoS & IMB-CNM Collaboration Vienna Conference on Instrumentation (VIC), 2022 February, 2022

Co-Authors: Albert Doblas², David Flores², Salvador Hidalgo², Johann Marton¹, Manfred Valentan¹, Jairo Villegas², Giulio Pellegrini², Gertrud Konrad^{1,3}

- (1) Stefan Meyer Institute (SMI), Austrian Academy of Sciences
- (2) Centro Nacional de Microelectrónica (IMB-CNM-CSIC)
- (3) Atominstitut, TU Wien

Motivation & Challenges

- Detection of low penetrating particles i.e. particles with range of hundreds of nanometers in silicon
- Challenges using HEP Detectors for such particles
 - Thick Entrance windows
 - Thick passivation layers (dead layer)
 - Thick backplanes (fieldstop)
 - Low Signal to Noise Ratio
 - Consequently: Low detection efficiency

Need for New Detector

Challenges

Entrance Window

SNR

Detection Efficiency

Conventionally Available

Thick

(High recombination rate near surface \rightarrow CCE < 1)

Low

(e.g. Signal of approx. 3100 e⁻/h⁺ pairs for 15 keV protons)

Low

Our Solution

Custom Development

Unstructured, Thin

(Low penetrating particles can penetrate deeper in the active sensor area)

High

(Uniform Internal Gain)

High

Proton Low Gain Avalanche Detector (pLGAD) Structural

Concept

N⁺ electrode

- Polarity is chosen so electrons drift to the readout side after crossing the multiplication layer
- No amplification of leakage current as holes have smaller saturation velocity

Detection of Backscattered Particles

- Due to introduction of collection layer, the detector is more sensitive to smaller signals
- Sensitivity can be useful to study backscattered particles for correction of data

Add. comparison to DEPFETs and SDDs

- In contrast to DEPFETs & SDDs, a pLGAD sensor
 - is a lot **cheaper**.

2/21/2022

- can be operated w/o cooling,
- requires only one operation voltage,
- is compatible with off-the-shelf DAQ systems,
- has a higher timing resolution,
- can be combined with other readout. structures, as long as electrons are being collected (n-in-n)

SMI – STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSICS

Signal Shape (Weightfield2 Simulation Video)

*Watch in slide show mode for proper animations

Assuming a gain of 10

2/21/2022 Waleed Khalid (SMI)

Signal Comparison (Weightfield2 Simulation)

15 keV Proton

Minimum Ionizing Particle (MIP)

Behaves like a planar sensor for MIPs

First Production Run for Proof of Principle

- 4 diodes (5.3x5.3 mm², single channel) from 1st Production run chosen
 - No collection region in the first run
 - A reverse polarity iLGAD with thin backplane, unstructured entrance window, and shallow multiplication implant
- IV and CV measurements conducted
- TCT measurements to follow
- Will provide proof of principle
 - Collection region will be introduced in the next production run

P+ electrode

N-type multiplication layer

High resistivity n-type substrate

N+ electrode

SMI – STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSICS

Characterization of First Production Run (without collection layer)

- **Stable performance** at low bias voltage
- Full depletion achieved at ~35V
 - **Agreement** with **TCAD** simulations

Applications for Low Energy Physics

- Neutron Physics
 - Proton detection from Neutron Beta Decay (e.g. NoMoS, Nab)
 - Neutron Detection
- Space Applications
- Medical Physics
- Ion physics
- Many more

*Image Credit: ESS

*Image Credit: McGill Medical Physics

Outlook

- Characterization of first production run (reverse polarity iLGAD with deep implant) underway
- TCT measurements will soon be conducted
 - Will provide proof of principle before introduction of collection region
- Beam line testing at VERA (Vienna Environmental Research Accelerator) with low energy protons to be conducted later this year

Summary

- pLGAD new detector concept to detect low penetrating particles
- Features of the detector include:
 - Internal gain with no Noise multiplication
 - **High timing** resolution
 - Thin entrance window
- Cheaper due to simple planar technology
- Comparable if not better than existing technology
- Multiple applications in low energy physics