The LiNA experiment:
Development of multi-layered time projection chamber

Naoyuki SUMI / High Energy Accelerator Research Organization
Feb 2022

VCI2022 - The 16th Vienna Conference on Instrumentation
Introduction: Neutron lifetime

- Free neutrons decay to beta through weak interactions
 \[n \rightarrow p + e^- + \bar{\nu}_e \]

- Neutron lifetimes have been measured by two different methods.
 - **Beam method:** Counting decay neutrons
 \[\frac{dN}{dt} = \frac{N}{\tau} \]

 - **Storage method:** Counting remaining neutrons
 \[\frac{N_1}{N_2} = e^{(t_1 - t_2)/\tau} \]

- The cause of the discrepancy between the methods (8.6 s / 4.1σ) has not been understood for a long time.
 \[\Rightarrow \quad \text{New measurements using beam methods are needed.} \]
J-PARC MLF BL05

Neutron is produced by injecting proton beam to mercury target.

Beam line property
- Neutron energy: ~10 meV
- Neutron velocity: ~1000 m/s
- Beta decay rate: 0.1 cps
- \(^3\)He absorption rate: 2.5 cps

Spin Flip Chopper makes short neutron bunches to reduce background.

- \(^6\)LiF shutter: is a 5 mm thick \(^6\)LiF plate to control neutron beam.
- Cosmic veto counters: is plastic scintillators to identify cosmic ray.
Measurement principle

- Using a neutron beam, **beta decay events** and **^3He absorption events** are measured with a gas detector, Time Projection Chamber.

- The neutron lifetime is derived from the ratio of both signals.

\[
\tau_n = \frac{1}{\rho \sigma v} \left(\frac{S_{\text{He}}}{S_\beta} / \frac{\varepsilon_{\text{He}}}{\varepsilon_\beta} \right)
\]

- **^3He density** increases, **^3He cross section \times neutron velocity** also increases.

- Neutron beam

\[
n \rightarrow p + e^- + \bar{\nu}_e
\]

- $n + ^3\text{He} \rightarrow p + ^3\text{H}$

- $< 0.754 \text{ keV}$ or $< 782 \text{ keV}$

- $= 572 \text{ keV}$ $= 191 \text{ keV}$

- TPC detector made of PEEK

- TPC Gas: $^4\text{He}:\text{CO}_2:^3\text{He} = 85 \text{ kPa}:15 \text{ kPa}:100 \text{ mPa}$

- Time Projection Chamber (TPC)
Measurement results

Large uncertainty in correction

\[
\tau_n = \frac{1}{\rho \sigma v} \left(\frac{S_{\text{He}}}{S_{\beta}} \frac{\varepsilon_{\text{He}}}{\varepsilon_{\beta}} \right)
\]

- ρ (3He density): $(2.08 \pm 0.01) \times 10^{19}$ #/m3
- σv (3He cross section \times neutron velocity): 5333 ± 7 barn \times 2200 m/s
- S_{He}: 202993 ± 480 event
- S_{β}: 8868 ± 151 event
- ε_{He}: $100 - 0.014\%$
- ε_{β}: $94.5 \pm 1.0\%$

Results of the previous experiment

\[
\tau_n = 896 \pm 10 \text{ (stat)} \pm 14/-10 \text{ (syst) sec}
\]

- Beam method: 888.0 ± 2.0 sec
- Storage method: 879.4 ± 0.6 sec

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Correction</th>
<th>Uncertainty</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>$(2.08 \pm 0.01) \times 10^{19}$ #/m3</td>
<td>0</td>
<td>0.5%</td>
<td>Can be improved by the method of introducing 3He gas</td>
</tr>
<tr>
<td>σv</td>
<td>5333 ± 7 barn \times 2200 m/s</td>
<td>0</td>
<td>0.13%</td>
<td>Alternate measurement required</td>
</tr>
<tr>
<td>S_{He}</td>
<td>202993 ± 480 event</td>
<td>2672 ± 351 event</td>
<td>0.3%</td>
<td>Statistical accuracy dominates</td>
</tr>
<tr>
<td>S_{β}</td>
<td>8868 ± 151 event</td>
<td>463 ± 154 event</td>
<td>2.6%</td>
<td>Background event contamination 5.2%</td>
</tr>
<tr>
<td>ε_{He}</td>
<td>$100 - 0.014%$</td>
<td>$0 + 0.014%$</td>
<td>0.014%</td>
<td>Enough accuracy</td>
</tr>
<tr>
<td>ε_{β}</td>
<td>$94.5 \pm 1.0%$</td>
<td>$+5.5 \pm 1.0%$</td>
<td>1.0%</td>
<td>Efficiency correction 5.5%</td>
</tr>
</tbody>
</table>
Background contamination

- Beta decay and background events get mixed up.
 - **β decay**: Radial distribution from beam axis
 - **Background**: Intrusion into beam axis
Solution using magnetic field

- Separating beta decay from background events
 - **β decay**: Focus on beam axis
 - **Background**: No intrusion into beam axis

![Diagram](image)

Beta decay tracks at 600 mT

- **β decay**

![Beta decay tracks graph](image)

Neutron-induced background tracks at 600 mT

- **Background**

![Background tracks graph](image)
Superconducting magnet

- Using a spare superconducting magnet from the BESS experiment
 - Solenoid coil 920 mT @580 A
 - Coil $\Phi 1000 \text{ mm} \times 1300 \text{ mm}$
 - Superconducting wire NbTi:Cu:Al
Detector Design

- **Using 3D CAD to design detectors**
 - Three-layer detector area
 - Select non-magnetic materials for components.
Integration test with superconducting magnet

- Transport of fabricated detectors to KEK
 - Integration test of superconducting magnet and detector was carried out.
 - Detectors and amplifiers can operate in magnetic fields?
 - Performance evaluation of detectors using cosmic rays and sources

- Detector calibration using X-rays from a 55Fe source
 - Sufficient gain and energy resolution at Anode HV +1.8 kV
 - No variation with or without magnetic field
Pseudo neutron beam measurement

- We want to place the beta source on the beam axis to simulate a neutron beam.
 - Intensity of checking source is too high and saturates the detector
 - Difficult to get permission to use in a magnetic or electric field
 - We decided to use the natural isotope 40K in KCl.

- KCl powder (6.2 g) is needed to make 100 Bq
 - Wrapped in Kapton sheet and placed in the center of the detector with a jig made with a 3D printer
Pseudo background event measurement

- The gamma source is placed next to the detector to simulate a background event.
 - **Without magnetic field**: Electrons generated on the wall enter the signal region.
 - **With magnetic field**: The electrons can't get to the signal field.

 \Rightarrow **Background events suppressed to 2.9%**.
Estimation of measurement accuracy

- The measurement accuracy was estimated using Geant4 simulation.
- A magnet and a detector are placed to inject a neutron beam.
- Calibrate detector response with cosmic ray and source data

⇒ *Create the same waveform as the experimental data,*

and calculate the lifetime

using the same analysis as the experimental data.

\[\tau_n(MC) = 887.0 \pm 3.3 \text{ (stat)} \pm 1.2 \text{ (syst)} \text{ sec} = 887.0 \pm 3.5 \text{ sec} \]
Estimation of accuracy

Decrease in indeterminacy as correction amount decreases

\[T_n = \frac{1}{\rho \sigma v} \left(\frac{S_{\text{He}}}{S_{\beta}} \left/ \frac{\varepsilon_{\text{He}}}{\varepsilon_{\beta}} \right. \right) \]

- \(^3\text{He} \) density \(\uparrow \)
- \(^3\text{He} \) cross section \(\times \) neutron velocity

<table>
<thead>
<tr>
<th>Value</th>
<th>Correction</th>
<th>Uncertainty</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>(2.3927 ± 0.002) (\times 10^{19}) #/m(^3)</td>
<td>0</td>
<td>0.1% Can be improved by the method of introducing (^3\text{He})</td>
</tr>
<tr>
<td>(\sigma v)</td>
<td>5333 ± 7 barn (\times 2200) m/s</td>
<td>0</td>
<td>0.13% Alternate measurement required</td>
</tr>
<tr>
<td>(S_{\text{He}})</td>
<td>1915609 ± 1384 event</td>
<td>9578 ± 575 event</td>
<td>0.3% Statistical accuracy dominates</td>
</tr>
<tr>
<td>(S_{\beta})</td>
<td>76611 ± 276 event</td>
<td>163 ± 12 event</td>
<td>0.4% Correction 5.2%→0.21%</td>
</tr>
<tr>
<td>(\varepsilon_{\text{He}})</td>
<td>100 - 0.01%</td>
<td>0 + 0.01%</td>
<td>0.01% Enough accuracy</td>
</tr>
<tr>
<td>(\varepsilon_{\beta})</td>
<td>99.90 ± 0.01%</td>
<td>+0.10 ± 0.01%</td>
<td>0.01% Correction 5.5%→0.10%</td>
</tr>
</tbody>
</table>
Summary

- Discrepancies exist between the two neutron lifetime measurement methods, the beam method and the storage method.

- The previous experiment has large indefiniteness associated with the correction.
 ⇒ Proposed measures to reduce corrections and developed a new measurement system
 - Developed a detector and evaluated its performance in a magnetic field.

- Precise neutron lifetime measurement with reduced correction using this system