

Design of Nupix-A1, a MAPS with timing and energy measurement for heavy-ion physics

Ping Yang

On behalf of the IMP&CCNU study group

VCI 2022-The 16th Vienna Conference on Instrumentation Feb, 21th-25th 2022

Outline

- ✓ Introduction on HIAF experiment
- ✓ MAPS development and the prototype
 - Sensor, front-end optimization, rolling-shutter readout mode
 - Column-level ADC and high speed of data transmission link at 5Gbps
- Summary

HIAF experiment

- The new-generation High Intensity heavy-ion Accelerator Facility (HIAF) is being built by the Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS)
- HIAF is an accelerator complex composed of the Superconducting Linac, the Booster Ring, the High Energy Fragment Separator, and the Spectrometer Ring.
- HIAF will enable scientists to perform a large variety of modern nuclear physics experiments

HIRFL-CSR

- ➤ High performance vertex and tracking detectors are in great demanded by various experiments
- Monolithic Active Pixel Sensor (MAPS) with energy, time and position measurement will be used in these experiments

CMOS pixel sensor and technology

- Integrated sensor and readout electronics on the same silicon bulk with "standard" CMOS process: low material budget, low power consumption, low cost ...
- Selected GSMC 130nm technology for Nupix-A1, featuring:
 - Thin gate oxide: robust to total ionizing dose
 - 1.2V power supply for digital circuit
 - 7 metal layers

MAPS for particle physics experiment

◆ MAPS development context and the design goals of our attempt

Name	Structure	Pixel pitch	Integ.time	Power density	Spatial resolution
MISTRAL (IPHC)	Column-level comparator, Rolling-shutter	22 × 33 (66) μm ²	30 μs	200 (100) mW/cm ²	
ASTRAL (IPHC)	In-pixel comparator, Rolling-shutter	24 × 31(IB) μm ² 36 x 31 (OB) μm ²	20 μs	85 mW/cm ² 60 mW/cm ²	$pprox 5 \mu m$
ALPIDE (CERN,IN FN,CCNU, YONSEI)	In-pixel comparator, In-matrix zero compression readout	27 x 29 μm²	< 4 μs	< 39 mW/cm ²	
Attempt	rolling shutter Can measure energy and time	compact	< 50 ns (time resolution)	< 200 mW/cm ²	< 8μm

Ping Yang (CCNU) VCI 2022 21/2/2022

First MAPS prototype design

- Pixel pitch: 30x30 μm
- The diode nwell size is 3x3 μm
- \succ Collection Electrode is 10 μ mimes10 μ m
- Pixel array:128 row x 64 col
- Front-end: current comparator, analog TAC and source follower
- Triggered readout
- > DACs, bias
- 4 columns /1 ADC(shared for energy and time)
- high speed data transmission: 5 Gbps

- Design goals:
 - Pixel size: < 30x30 um²
 - time resolution: < 5 us
 - Power consumption: < 200 mW/cm²

First MAPS prototype— energy measurement

- DC-coupled SF pixels: 3T structure
- two level source follower (nmos/pmos SF)
- Spacing = $3 \mu m$, diameter = $3 \mu m$, diode in

Octagon shape

- Qin: 1k-100ke-, Gain approx 10uV/e-, tran noise about 3e-
- Linear error: < 2%</p>
- Stabilization time before

ADC: 100ns

First MAPS prototype— time measurement

- ightharpoonup ALPIDE-like front-end charge creates negative voltage step ΔV_{PIX_IN} at input node(PIX_IN). M1 acts as a follower and force source to follow gate.
- Threshold 265 e- : from OUT_A baseline voltage to point where discriminated output OUT_D flips when $I_{M8} > I_{DB}$.

$$\Delta V_{OUT_A} \approx \frac{C_s \bullet \Delta V_{PIX_IN}}{C_{OUT_A}} = \frac{C_s}{C_{OUT_A}} \bullet \frac{Q_{in}}{C_{PIX_IN}}$$

Peaking time< 50 ns, time walk 86ns but 14ps after digital buffer, ENC < 8.5 e-</p>

Ping Yang (CCNU) VCI 2022 21/2/2022

First MAPS prototype— time measurement

- > TAC: adjustable charging current from 1nA to 10nA
- Large time measurement range: 3 μs to 100 μs
- Linearity error: < 30 LSB @3 μs, 1LSB = 3ns</p>

Ping Yang (CCNU) VCI 2022 21/2/2022 10

Chip periphery: BG and DACs

BandGap: 1.25 V for voltage DACs

Voltage DAC

- 10 bits R-2R DAC, output range 0-3.02 V;
- Power consumption < 150uA.</p>

Current DAC

- 8 bit (0 2.52uA), LSB=10 nA;
- The digital decoder is using 6bits thermometer and 2 bits binary to compromise the area and the accuracy.

Ping Yang (CCNU) VCI 2022 21/2/2022 11

Chip periphery: Column cyclic ADC

- > 11-bit and covers a small area of 100μm x 300μm
- ➤ Power consumption is 7.6 mW with 3.3 V power supply
- > sampling rate 3.63 MSps \ SNDR 66.25dB \ ENOB 10.7bit

Digital periphery

- Power supply is 1.2V, consist of 16b/20b encoder, 20:1 serializer, FFE driver, high speed receiver;
- ➤ 20:1 serializer consumes power:< 28 mA;
- The FFE driver consumes power:< 15 mA, work at 5 Gbps;</p>
- The receiver is a hysteresis comparator, consume power:< 5 mA, work at 5Gbps;</p>
- ➤ The power consumption of the whole data transmission link is 58 mA.
- ➤ The RMS jitter with DCC < 6ps

Summary

- ◆ This first prototype is under testing;
- 2 versions of highly compact pixels was developed with rolling-shutter in 0.13 μm
 CIS CMOS technology;
- **Pixel Size**: $30 \times 30 \, \mu \text{m}^2$;
- **Speed**: 8 μs/row;
- **Power**: 350 nA/pixel, analog power supply is 3.3V;
- Can measure energy time and position;
- Power density is about 300mW/cm²;
- ◆ This chip is under testing, the accuracy need to be improved in the next version

Thank you very much for your time!