

High-temperature performance of solid-state sensors (500°C)

VCI2022, Vienna/Austria

C. Weiss^{1,2}, Jennifer Wilson^{3,4}, Georg Tiebel^{3,4}, Patrick Steinegger^{3,4}, H. Frais-Kölbl⁵, E. Griesmayer^{1,2}, Rugard Dressler³, Massimo Camarda⁶, Maria del Mar Carulla Areste³

¹ TU Wien, Atominstitut, Vienna, Austria
² CIVIDEC Instrumentation GmbH, Vienna, Austria
³ Paul Scherrer Institut, Villigen PSI, Switzerland
⁴ ETH Zürich, Zurich, Switzerland
⁵ University of Applied Sciences, Wiener Neustadt, Austria
⁶ SenSiC GmbH, Park innovAARE, Villigen, Switzerland

Main result

- Both sensor materials show α -signals up to 500°C.
- Charge yield decreases with increasing temperature.
- First promising results of an ongoing research campaign.

PAUL SCHERRER INSTITUT

INTRODUCTION AND EXPERIMENTAL SETUP

VCI2022, High-temperature performance of solid state sensors

Introduction

Introduction

- Follow-up measurement campaign of published results up to 200°C¹.
- Systematic investigation of solid-state sensor performance up to 500°C:
 - sCVD² sensor with 140 μm thickness.
 - SiC³ sensor with 30 μm depletion zone.

Motivation

Applications needing spectroscopic measurement of particles up to high temperatures:

- 1. Superheavy element chemistry: experiments using vacuum chromatography $T < 1000^{\circ}$ C.
- 2. Fusion research: $T < 500^{\circ}$ C.
- 3. Geodetic applications: *T* < 250°C.

² Single-crystal Chemical Vapour Deposition Diamond.³ Silicon-Carbide.

¹ B.Kraus et al., NIMA 989 (2021) 164947.

Experimental setup

- ²⁴¹Am α -source, measurement in vacuum.
- Sensor mounted in heated, ceramic structure. ٠
- Electrical connection via mechanical clamping. ٠
- Sensor HV = 150 V, electron-drift readout. ٠
- Signal readout on ground side of sensor. ٠
- Dark current (I_{dark}) measurement via HV supply line. •
- Temperature (T) measurement close to sensor. ۰

VCI2022, High-temperature performance of solid state sensors

Electronic readout

- Analogue electronics:
 - 1. Broadband current amplifier, 2 GHz, 40 dB: for Transient-Current Technique (TCT) measurements to investigate sensor physics.
 - 2. Charge sensitive amplifier: spectroscopic measurements to investigate the charge yield of the sensors.
- Data taking:
 - Each sensor signal recorded with LeCroy digital oscilloscope.
 - Dark current (I_{dark}) measurement of the sensors with Keithley 2470 source meter.
 - Temperature (*T*) measurement with Lutron thermometer.
- Data analysis offline:
 - 1. Signal analysis for amplitude, FWHM, area and baseline noise.
 - 2. Synchronization of signals with *T* and *I*_{dark}.

- 4 measurement campaigns.
- Reproducible results for signal amplitude, FWHM, deposited charge and dark current of sensor.

TCT MEASUREMENTS WITH DIAMOND

TCT with sCVD - Amplitude

- Measurements during heating up of sensor.
- Reproducible response for signal amplitude between measurement campaigns.
- Characteristic non-linearity between 60°C < T < 250°C.

TCT with sCVD - FWHM

- Measurements during heating up of sensor.
- Reproducible response for signal FWHM between measurement campaigns.
- Characteristic non-linearity between 60°C < T < 260°C.

TCT with sCVD - I_{dark}

- Measurements during heating up of sensor.
- Increase of *I*_{dark} as function of *T*.
- Increase of *I*_{dark} as function of run number/date.
- Characteristic non-linearity between 60°C < T < 250°C.
- Peak structures for T > 250°C probably due to auto-scale function of Keithley 2470.

TCT with sCVD - Charge

- Deposited charge¹ reproducible between measurement campaigns.
- Drop of charge yield between 250°C and 270°C and linear decrease above.
- Increased uncertainty between 250°C and 350°C.
- Quantitative analysis of charge yield with spectroscopic electronics – see next slides.

¹ Area of TCT signal = deposited charge.

SENSI

Ongoing measurement campaign => presentation of first results:

- Signals measured for sCVD and SiC up to 500°C.
- Systematic measurements for reproducibility and qualitative judgement are ongoing.

CHARGE YIELD OF DIAMOND AND SIC

Charge yield sCVD and SiC

- Measurements during heating up of sensors to 500 °C.
- 1 measurement series per sensor.
- sCVD:
 - Drop of charge yield by 15% at T = 250°C.
 - Droop between 260° and 500°C.
 - Overall decrease of 10%.
- SiC:

SENSI

- Decay of charge yield at $T = 380^{\circ}$ C.
- Droop between 380° and 500°C.
- Overall decrease of 60%.

Summary

Conclusions

<u>sCVD:</u>

- 1. Signal response up to 500°C.
- 2. 15% overall drop of charge yield.
- 3. Systematic TCT-study for e-readout:
 - Reproducible signal response up to 500°C.
 - Increase of drift time with temperature.
 - Strong non-linearity between 250°C and 350°C.

<u>SiC:</u>

SENSI

- 1. Signal response up to 500°C.
- 2. 60% overall drop of charge yield.

Outlook

- Further measurements for SiC:
 - TCT measurements
 - Reproducibility of charge yield
- Further measurements for sCVD:
 - TCT measurements for hole readout
 - Reproducibility of charge yield for electron and hole readout.

Thank you for your interest!

christina.weiss@cividec.at

VCI2022, High-temperature performance of solid state sensors