VCl2022 - The 16th Vienna Conference on Instrumentation

Contribution ID: 66

Type: Recorded Presentation

Development of radiation-hard depleted CMOS timing sensors

Developing a tens of picosecond sensor which will survive the radiation environment of the future high physics experiments is a challenge. For position detection, sensors in the HV-CMOS 150 nm process technology have proven to be inherently rad-hard thanks to the full depletion of several hundred microns of the substrate. A first iteration of a timing sensor in this technology, named CACTUS, has been tested with encouraging results but with a time resolution far from the 60 ps expected from the simulations due to unforeseen capacitance. A new prototype called MiniCACTUS has been designed and submitted to fabrication in order to address this issue. It includes integrated front-end electronics with discrimination for each pixel, a programmable slow-control, internal DACs and bias circuits. The baseline pixel pitches are 1 mm² and 0.5 mm² with additional test structures sizing 50 μ m x 50 μ m and 50 μ m x 150 μ m. The prototypes received from the foundry have been thinned to 100 μ m and 200 μ m and were post processed for backside polarization. The 200 μ m samples have shown a breakdown voltage higher than 300 V, a S/N better than 50 with cosmic rays, and a timing resolution around 80 ps, limited by the resolution of our timing reference system. A test-beam campaign is foreseen at CERN this year in order to assess precisely the timing resolution of the sensor. All these results will be presented at the conference.

Primary experiment

Authors: GUILLOUX, Fabrice (CEA/IRFU,Centre d'etude de Saclay Gif-sur-Yvette (FR)); DEGERLI, Yavuz (CEA - Centre d'Etudes de Saclay (FR)); MEYER, Jean-Pierre (IRFU-CEA - Centre d'Etudes de Saclay (CEA)); SCHWEM-LING, Philippe (CEA/IRFU,Centre d'etude de Saclay Gif-sur-Yvette (FR)); HEMPEREK, Tomasz (University of Bonn (DE))

Presenters: DEGERLI, Yavuz (Université Paris-Saclay (FR)); DEGERLI, Yavuz (CEA Saclay)

Track Classification: Semiconductor Detectors