

Performance demonstration of a novel Photon-counting CT for preclinical application

Waseda Univ¹ Kanazawa Univ² Teikyo Univ³ Hitachi Metal Ltd.⁵ Okayama Univ⁷

<u>OTakaya Toyoda¹</u>,

J. Kataoka¹, M. Sagisaka¹, M. Arimoto², D. Sato², K. Yoshiura², S. Kobayashi², H. Kawashima², J. Kotoku³, S.Terazawa⁵, S. Shiota⁵, M. Ueda⁷,

- > The problems of energy integrated CT
 - O X-ray CT is a powerful medical diagnostic device in medical imaging

☑ Readout methods

Problems

- ✓ Irradiation with High radiation dose (100Mcps/mm²)
- ✓ The lack of individual X-ray energy information
 - ⇒ Occurrence of <u>artifacts</u>
 - ⇒ The obtained images is monochrome J

Introduction

∼ Photon counting CT ∼

Photon-counting CT(PC-CT) system Readout of pulse mode

Imaging in each energy band

Benefit of PC-CT

- -Setting the threshold ⇒ \(\text{Cut noise components} \) such as dark current
- Obtain energy information of individual X-ray photons
 - ⇒ Imaging of \(\frac{1}{2} \) each energy band \(\text{J} \) is possible

Direct and indirect conversion-based PC-CT

Direct conversion-based PC-CT

- > Semiconductor-based PC-CT
 - ✓ Excellent energy resolution
 - ✓ Detector : CdTe, CZT

Problems

- O CSA and shaper are required for each channel
 - ⇒ System is complex and expensive
- O Difficult to make a large area

E. Marfo et al. (2020)

(Gadolinium, Iodine)

Indirect conversion-based PC-CT

> Scintillator coupled with MPPC

Benefits

Light emission

- Feasible at low cost
- O Simple system
- Use knowledge of conventional CT

X-ray / /

Signal pulse

High speed scintillator Decay time: ~ 70 ns

Internal gain: M ~ 10⁶

Rapid temporal: ~ 10 ns

Density image

Limitation of PC-CT

~ the lack of statistics ~

- > Image quality deterioration
 - O PCCT system in general, the lack of statistics results in image deterioration
 - ✓ Image reconstruction in a narrow energy band (Typically, 10 – 20 Kev)

The photon statistics are severely limited

◆ Applying machine learning (ML) models

ML models

~ Architecture of ML models ~

> Overview of Architecture (T. Toyoda et al. Jinst 2021)

Noise2Noise Convolution Convolution output Residual block Residual block Convolution Batch Norm **Shortcut connection** Convolution Norm Norm Sonvolution Input **Residual block**

Results

∼ Applying ML models to mixed phantom images ∼

Results of applying ML models

Super-resolution PC-CT images

~ Experimental setup ~

> Experimental setup

○ The third-generation X-ray CT

O Phantom condition

Hole size
· 4mm
· 3mm
· 2mm

• 1.5mm • 1mm

◆ Generate virtual 128ch or 192ch detector

In the case of 128ch

Shooting as usual

- ⇒ move the detector 0.5 mm
- ⇒ shooting again
- ⇒ combine the both of two projection data
- ⇒ image reconstruction
- ⇒ obtain 128 × 128 pixel image

- (A) Acrylic phantom with several holes

 The hole sizes were 4, 3, 2, 1.5, 1 mm
- (B) Gold nanoparticles phantom in the water The concentration was 10 mg/ml

Super-resolution PC-CT images

~ Experimental setup ~

> Results of MTF evaluation

(A) Results of hole phantom

(B) Results of AuNP phantom

	MTF	Resolution
Conventional	0.48	1.04 mm
High resolution	0.65	0.77 mm

MTF & resolution of CT images using new method were better

Successfully improved resolution with new imaging method

Application to in vivo imaging

∼ Next target of PCCT ∼

- Previous performance of PCCT
 - Only phantom-based PCCT imaging (Contrast Agents, nanoparticles, etc..)
 - The challenge of <u>in vivo</u> imaging for clinical applications (rat, mouse, etc..)

Before in vivo imaging ...

However...

Mouse shooting takes much time to prepare

Imaging validation in plants before in vivo imaging of mouse

Challenging PCCT imaging in plants as a preliminary validation for in vivo imaging

Visualization of dynamics in plants

~ Experimental setup ~

> Application of PCCT to botany

- PCCT allows flexible imaging
 - ⇒ because PCCT can provide multiple sets of energy information
- PCCT Enables non-invasive observation of structures internal to plants
- Verifying whether K-edge imaging can be performed in plants

☐ Using the mechanism of water uptake by plants

Measurement Condition

Tube voltage : 140 kV

Tube current : 0.7 mA

Exposure time: 700 ms/pixel

Energy thresholds

23, 31, 49, 70, 85, 105 keV

Visualization of dynamics in plants

~ Imaging results ~

> Comparison between with and without iodine

Without iodine (only water absorption)

- Green part is the area that has absorbed water
- No changes in CT images

With iodine

Succeeded in highlighting the iodine absorption part

With iodine

Successful visualization of contrast agents in plants by K-edge imaging

Visualization of dynamics in plants

~ imaging results ~

> 3D imaging of carrot

- ✓ Challenging 3D Reconstruction of carrot absorbing iodine Using PCCT
- ✓ Use energy information to distinguish between iodine and the rest

Iodine: yellow, the other part: red

Surface soaked in iodine

2D slices of 3D reconstruction

Successful material decomposition in 3D reconstruction image

Conclusion & Future works

Conclusion

- Confirmed SN improvement of CT images by machine learning models
- Super-resolution CT images were successfully acquired
- Demonstrated contrast agent visualization in plants

Future works

- Construction of a larger detector
- Challenge for in vivo imaging
- Applying ML models to in vivo images

S. Si-Mohamed et al. (2017)

H. Wang et al. (2012)