

G. Auzinger on behalf of the CMS Collaboration

High-precision luminosity instrumentation for the CMS detector at the HL-LHC

VCI 2022, Feb. 21st to 25th 2022

Luminosity measurement in CMS

- ► Is the responsibility of the Beam Radiation Instrumentation & Luminosity (BRIL) Project
 - Formed in 2013 to collect smaller systems under one roof
 - Deliverables include:
 - ▶ Luminosity ← this presentation
 - Monitoring of beam-induced background (BIB)
 - Active protection from dangerous beam loss events (beam abort)
 - Relative beam timing and technical triggers
 - Monitoring of radiation environment in the CMS cavern
 & radiation simulation

- Operating a series of beam- and luminosity instrumentation independently from central services since the beginning of CMS
- A relatively small project with very diverse responsibilities

High-Luminosity LHC & physics motivation for improved luminosity instrumentation

BRIL

- High-Luminosity LHC will increase instantaneous luminosity w.r.t nominal by a factor of 7.5 (5x10³⁴ cm⁻²s⁻¹)
- Maximum Pile-up of 200
- Many changes to beam optics
 - CRAB cavities
 - Bigger collimator apertures
 - Different β*
 - Luminosity levelling
- Will make precision luminosity extremely challenging
 - ► Thus requires a series of redundant, complimentary & independent luminometers

0.04 0.06 0.0 Expected uncertainty

0.02

Luminosity uncertainty is dominant in key channels of physics interest Examples from Drell-Yan, top and

Higgs measurements

In the most precisely measured Higgs boson production process, gluon fusion (ggH), luminosity uncertainty will dominate the experimental uncertainty at HL-LHC even with the target 1% precision and will remain significant even when including the expected theoretical uncertainties

BRIL - CMS SUBSYSTEMS for bunch by bunch PHASE II LUMINOSITY

- Phase II luminosity will become a consumer of CMS subsystem data, much like the trigger and DAQ
- 2. In addition, build a dedicated subdetector, FBCM, a simple, reliable and independent high precision luminometer
 - orthogonal systematics to other CMS subsystems
 - ▶ sub-BX time resolution
 - bunch-by-bunch luminosity
 - beam-induced background measurement
 - fully independent operation

For HL-LHC, aim for:

- Luminosity uncertainty
 - o < 1% offline
 - < 2% online</p>

Generic BRIL histogramming FW

New histogram

KxN bins per BX == 40MHz clock

De-Mux

FIFO

control

interface

(32-bit bus)

Mask

Errors

Read-out FIFO

- For HL-LHC BRIL will become a consumer of subsystem data
 - To either be counted (histogrammed, BX-by-BX) directly in the respective back-end Or requiring dedicated real-time processing
 - (TEPX, D4R1)
 - Counts are to be integrated during so-called 'lumi-words' lasting 1 second
- Two kinds of data:
 - Synchronous (with 40 MHz bunch clock): OT stubs, muon stubs,...
 - Asynchronous (triggered read-out, random):
- TEPX clusters, scouting muons,... In order to facilitate integration, BRIL is developing a generic drop-in FW block to perform histogramming
 - Synchronous & asynchronous versions with standardised interfaces
 - To be used by all BRIL data sources in HL-LHC
 - Provides error handling & dynamic masking

TEPX

BRIL

Tracker End-Cap Pixel Detector (TEPX)

- ▶ 4 disks x 5 rings per side sensitive area of more than 2 m² [€]
- Always on for qualified beams
 - Operated by the Tracker Project
 - ▶ 750 kHz physics triggers
 - ▶ 75 kHz of additional & independent luminosity triggers
 - Lumi events sent to dedicated lumi processor board
- Stat. uncertainty for pixel cluster counting:
 - ~ 0.095% / BX / s for physics at PU200
- ▶ 2- and 3-fold coincidence counting: additional tool for monitoring / calibration

TEPX Disk 4 Ring 1 (D4R1)

- Operated exclusively by BRIL, still benefiting from the tracker infrastructure
- ▶ Always on when safe operated on LHC clock outside of stable beams
- Full trigger bandwidth dedicated to luminosity: up to 1 MHz at PU200 and 2 MHz (possibly 4 MHz) in low pile-up conditions
- ▶ Stat. uncertainty ~ 0.1% / BX / s for physics at PU200
- Ability to measure beam-induced background

BRIL Responsibilities

- Development of a dedicated real-time pixel cluster counting firmware
- Development of dedicated clocking & triggering infrastructure
- ▶ Development of real-time processing, analysis algorithms for luminosity and BIB

Highlights of TEPX and D4R1 development

Clustering

BRIL

- Geometrical TEPX clustering algorithm per CMX Pixel Read-out Chip (CROC)
 - Successful implementation of 192 clustering instances on a VU13P FPGA (more than required by current TEPX baseline; no timing violations, 40% of FPGA logic, 15% of BRAM memory)
 - Excellent agreement with CMS offline clustering algorithm (<0.01% difference)
- ► Special clocking scheme enabled by an extra node in clock distribution tree for independent D4R1 operation to allow BIB measurement during LHC ramps
 - So-called 'BRIL Trigger Board' prototype firmware developed and principle validated
 - All basic components (RD53A, IpGBT, Xilinx FPGAs, Silicon Lab PLLs) tested to be able to follow the ramping LHC clock without loss of PLL or transceiver locks
 - Phase error <10 ps, negligible for D4R1 front end with a ToT sampling period of 25 ns</p>

VU13P

7

Fast Beam Condition Monitor (FBCM) concept

- Silicon pad sensors behind TEPX & close to the beam-pipe
- ► Front end compatible with Tracker opto-electronics (lpGBT & VTRX+) and all services (cooling, powering, readout)
- ► Triggerless, asynchronous ASIC with few hundred ps time resolution
 - ▶ double hit resolution compatible with efficient BX-by-BX measurement
 - Semi-digital output starting at time-of-arrival and lasting time-over-threshold
- ► ASIC design
 - ▶ To be developed by CERN EP/ESE in 2022 specifications finalized
 - Modular front-end architecture: front-end modules & remote service-electronics (opto + power) for improved longevity
 - ► Readout using spare Inner Tracker services (supporting a total of 12 ASICS)
 - ► 7 channels/ASIC ⇒ 84 sensors per quarter for a total of 336 individual channels

FBCM parameter optimization

BRIL

- Luminosity algorithm based on zero counting
- Detector design optimisation based on statistical uncertainty vs. linearity* and a pragmatic frontend design
 - Simulated using CMSSW and preliminary ASIC characteristics (to be fine-tuned during ASIC development)
- ► Baseline described in the TDR:
 - ► sensor size: 2.89 mm²
 - ► location: r =14.5 cm & z = 283.5 cm
 - Frontend ASIC with ~ 12ns FWHM pulses

 Measurement of beam-induced background for BCIDs of single and 1st bunches in the train

Outer Tracker Layer 6

Motivation

- Outer Tracker provides two-sensor coincidences (stubs) for the
 L1 Track Trigger at 40 MHz during stable beams
- Transmitted through the Outer Tracker back-end
- Only histogramming module needs to be added to existing OT tracker back-end firmware to be able to count stubs (BX-by-BX)
- Layer 6 stubs have shown to be linear with pile-up in simulation
- Highest statistical power of all BRIL systems

Implementation baseline

- ▶ 6 generic histogramming modules per OT back-end card
 - ► 12 modules (1 ladder) per histogram
- Relatively small (but non-negligible)

resource utilisation

- VU9P / 6 histograms:0.5% of LUT and 2.4% of BRAM
- Read out via slow control interface (control network) ~ 500 kBits/s per board
- Error handling: dynamically exclude failing and include recovered modules from histogramming
 to be fully developed

Hadron Forward Calorimeter (HF)

- Already the backbone of BRIL Luminosity measurement in Runs 2 & 3
- No significant change foreseen for HL-LHC
- Two luminosity algorithms: HF transverse energy sum (HFET) and HF occupancy (HFOC)
- Rings 31 & 32 (3.15 < $|\eta|$ < 3.5) give best linearity
 - Studied using samples that include the latest HGCAL geometry & aging of 1000 fb⁻¹
- For HFOC some non-linearity at high PU previously observed, but understood

Muon Barrel back-end and 40 MHz scouting

Muon Barrel Trigger Primitives

- Synchronous 40 MHz BRIL histogramming firmware to be installed in the Barrel Muon Trigger Laver-1
- FW included for Run 3 Slice Test (demonstrator)
- Stat. precision: 1.2% / bunch / s at PU200

Barrel Muon Track Finder (Drift Tubes + Resistive Plate Chambers) muon candidates accessible via 40 MHz scouting system

- System for real-time processing/recording/histogramming of L1 primitives via spare L1 Trigger output fibers
- Asynchronous histogramming FW to be installed (data not clock-synchronous)
- Offline performance studied in 2018 data samples
 - Stat. precision: 4.6% / bunch / s at PU200
 - Excellent linearity and negligible background
- Real-time histogramming demonstrator foreseen for Run 3

EndCap Muon Track Finder muon candidates

- Stat. precision: 1.9% / bunch / s at PU200
- Sub % *linearity* requires more study
- Interesting prospects for measurement of high-radius beam-induced-background and also cavern background

Scouting can be extended to track & calo objects in Phase 2

Performance comparison & considerations

Summary of the performance characteristics and capabilities of the proposed luminosity systems.

	Available outside stable beams	Independent of TCDS	Independent of foreseeable central DAQ downtimes	Offline luminosity available at LS frequency (bunch-by-bunch)	Statistical uncertainty in physics per LS (bunch-by-bunch)	Online luminosity available at ~1s frequency (bunch-by-bunch)	Statistical uncertainty in vdM scans for ovis (bunch-by-bunch)	Stability and linearity tracked with emittance scans (bunch-by-bunch)
FBCM hits on pads	✓	✓	✓	✓	0.037%	1	0.18%	✓
D4R1 clusters (+coincidences)	✓	✓	✓	✓	0.021%	1	0.07%	1
HFET [sum ET] (+HFOC [towers hit])	✓	if configured	if configured	✓	0.017%	✓	0.23%	1
TEPX clusters (+coincidences)	if qualified beam optics	Х	if configured	√	0.020%	√	0.03%	1
OT L6 track stubs	Х	Х	if configured	✓	0.006%	1	0.03%	1
MB trigger primitives via back end	✓	Х	Х	✓	0.25%	1	1.2%	✓
40 MHz scouting BMTF muon	✓	Х	Х	✓	0.96%	1	4.7%	✓
REMUS ambient dose equivalent rate	✓	✓	✓	orbit integrated	orbit integrated	orbit integrated	orbit integrated	orbit integrated

Summary

- The HL-LHC presents a unique challenge for CMS and requires improved luminosity precision to increase physics performance
- BRIL has developed a comprehensive plan to exploit a host of different and independent data sources across CMS to provide:
 - Complementary luminosity measurements with different systematics
 - two systems under full control of BRIL
- Major proof-of-concept tests have been successfully completed and summarised in the recently approved & published <u>BRIL Technical Design</u> <u>Report</u>
- The project is working towards final engineering designs and algorithms